
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

9-14-2017

A Stochastic Model of Plausibility in Live-Virtual-
Constructive Environments
Jeremy R. Millar

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Millar, Jeremy R., "A Stochastic Model of Plausibility in Live-Virtual-Constructive Environments" (2017). Theses and Dissertations.
769.
https://scholar.afit.edu/etd/769

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/769?utm_source=scholar.afit.edu%2Fetd%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

A STOCHASTIC MODEL OF PLAUSIBILITY
IN LIVE-VIRTUAL-CONSTRUCTIVE

ENVIRONMENTS

DISSERTATION

Jeremy R. Millar, Major, USAF

AFIT-ENG-DS-17-S-015

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-DS-17-S-015

A STOCHASTIC MODEL OF PLAUSIBILITY IN

LIVE-VIRTUAL-CONSTRUCTIVE ENVIRONMENTS

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Jeremy R. Millar, B.S.C.S., M.S.C.S

Major, USAF

September 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-DS-17-S-015

A STOCHASTIC MODEL OF PLAUSIBILITY IN

LIVE-VIRTUAL-CONSTRUCTIVE ENVIRONMENTS

DISSERTATION

Jeremy R. Millar, B.S.C.S., M.S.C.S
Major, USAF

Committee Membership:

Douglas D. Hodson, PhD
Chairman

Gilbert L. Peterson, PhD
Member

Darryl K. Ahner, PhD
Member

ADEDEJI B. BADIRU, PhD
Dean, Graduate School of Engineering and Management

www.manaraa.com

AFIT-ENG-DS-17-S-015

Abstract

Distributed live-virtual-constructive simulation promises a number of benefits for the

test and evaluation community, including reduced costs, access to simulations of lim-

ited availability assets, the ability to conduct large-scale multi-service test events,

and recapitalization of existing simulation investments. However, geographically dis-

tributed systems are subject to fundamental state consistency limitations that make

assessing the data quality of live-virtual-constructive experiments difficult. This re-

search presents a data quality model based on the notion of plausible interaction

outcomes. This model explicitly accounts for the lack of absolute state consistency

in distributed real-time systems and offers system designers a means of estimating

data quality and fitness for purpose. Experiments with World of Warcraft player

trace data validate the plausibility model and exceedance probability estimates. Ad-

ditional experiments with synthetic data illustrate the model’s use in ensuring fitness

for purpose of live-virtual-constructive simulations and estimating the quality of data

obtained from live-virtual-constructive experiments.

iv

www.manaraa.com

Table of Contents

Page

Abstract . iv

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

I. Introduction . 1

II. Background . 6

2.1 Consistency Models . 6
Strong Consistency . 7
Eventual Consistency . 7
Consistent Prefix . 8
Bounded Staleness . 8
Monotonic Reads . 8
Read My Writes . 8

2.2 CAP Theorem . 11
2.3 State Synchronization . 12

Types of Error in Distributed Virtual Environments 12
State Update Policies . 16

2.4 Tolerance Intervals . 20
2.5 Summary . 20

III. Modelling Plausibility in LVC Simulation . 23

3.1 LVC Architecture . 23
3.2 Modeling Plausibility . 25
3.3 Computing Plausibility Exceedance Probabilities 28

IV. Analysis and Applications . 35

4.1 Model Validation . 35
4.2 Performance Evaluation . 43

V. Conclusion . 48

Bibliography . 51

Appendix A. Publications . 59

v

www.manaraa.com

List of Figures

Figure Page

1 A simple two-entity distributed virtual environment. 9

2 State changes for a simple two-entity distributed virtual
environment. 9

3 Aging of distributed state data [20]. 14

4 Entities, implementation, and dynamic shared state [23]. 26

5 A simple two-state model of interaction plausibility. 28

6 Factors influencing interaction plausibility and the
dependencies between them. 29

7 Excerpt from a World of Warcraft entity position trace. 36

8 Position trace of an example World of Warcraft entity. 37

9 Acceleration histogram for the World of Warcraft entity
in Figure 8. 38

10 95% upper tolerance bound (α = 0.05) across the range
of expected update periods and latencies. Response
surface derived from World of Warcraft replays. 39

11 Contour plot of the upper tolerance surface in Figure
10. Contours are plotted for plausibility limits from
L = 0.1 m to L = 1.1 m in increments of 0.1 m. 40

12 Jump time distribution for the plausible to implausible
state transition with plausibility limit = 0.1, latency =
0.035, and update period = 0.020. 41

13 Jump time distribution for the plausible to implausible
state transition with plausibility limit = 0.1, latency =
0.5, and update period = 0.3. 42

14 Boxplot showing percentage of time spent in the
plausible state for model predictions and validation sets. 43

vi

www.manaraa.com

Figure Page

15 Update period as a function of plausibility limit with a
delay of 100 ms and maximum acclerations of 1, 5, and
10 G. Blue and red lines indicate 100 ms and 300 ms
update periods respectively. 44

16 Deviation between the 95% upper tolerance bound
(1− α = 0.05) and plausibility limit L = 1.0 for an
entity with normally distributed acceleration N(0, 1). 45

17 Performance comparison of plausibility-based periodic
and dead-reckoning update policies across a range of
plausibility limits (L = 0 to L = 5) with a nominal
latency of 100 ms. Performance is expressed as a
percentage of total frames within the plausibility limit,
i.e., Dt(Sc, Ss) ≤ L. 46

18 Performance comparison of plausibility-based periodic
and dead-reckoning update policies across a range of
plausibility limits (L = 0 to L = 5) with a nominal
latency of 300 ms. Performance is expressed as a
percentage of total frames within the plausibility limit,
i.e., Dt(Sc, Ss) ≤ L. 47

vii

www.manaraa.com

List of Tables

Table Page

1 Consistency Guarantees [49]. 7

2 A sequence of writes for a simple distributed virtual
environment. 10

3 Possible read results for each consistency model.
Correct states are shown in bold. Stale states are shown
in italics. Invalid states are shown in plain type.
Ordered pairs represent (triangle position, square
position). 10

viii

www.manaraa.com

List of Abbreviations

Abbreviation Page

LVC Live-Virtual-Constructive . 1

DIS Distributed Interactive Simulation . 1

HLA High Level Architecture . 1

TENA Test and Training Enabling Network Architecture 1

T&E Test & Evaluation . 1

DVE Distributed Virtual Environment . 2

CAP Consistency-Availability-Partition Tolerance 6

TSI Time-Space Inconsistency . 13

ix

www.manaraa.com

A STOCHASTIC MODEL OF PLAUSIBILITY IN

LIVE-VIRTUAL-CONSTRUCTIVE ENVIRONMENTS

I. Introduction

Live-Virtual-Constructive (LVC) simulations are complex systems comprising a

combination of live (real people operating real equipment), virtual (real people oper-

ating simulated equipment, or vice versa), and constructive (wholly simulated) enti-

ties interacting in a virtual space [23]. Entities may represent individuals, equipment,

systems, or groups of these such as a platoon or battalion and represent the actors

within the simulation. Physically, LVC simulations are structured as a set of nodes

consisting of compute, storage, input/output, and simulation resources connected via

telecommunications networks. Nodes support the simulation of one or more entities

and are often geographically distributed to leverage unique assets, e.g., physical test

range space or high-fidelity full motion simulators. Nodes are often connected in a

peer-to-peer fashion and communicate using protocols such as Distributed Interactive

Simulation (DIS) [12], the High Level Architecture (HLA) [9] or the Test and Training

Enabling Network Architecture (TENA) [40].

Distributed LVC simulation promises a number of benefits for the test and eval-

uation (T&E) community, including reduced costs, access to simulations of limited

availability assets, the ability to conduct large-scale multi-service test events, and re-

capitalization of existing simulation investments [14]. Consequently, the Department

of Defense (DoD) is increasingly turning to LVC simulation and virtual environments

to support T&E events. LVC simulations have been used to test communications for

unmanned aircraft systems [39], conduct cyber security analysis [51], and quantify

1

www.manaraa.com

radar measurement errors [22].

LVC simulations are typically designed as fully replicated, geographically dis-

tributed database applications with real-time constraints. Consequently, each simu-

lation node maintains a complete copy of the state database for all simulated entities

which must remain synchronized throughout a simulation run. The data of interest

is composed of entity and world state information and derived quantities such as col-

lisions or weapons effectiveness. Entity state data is replicated to meet availability

and responsiveness requirements. The inclusion of live entities and users imposes real-

time constraints on database responsiveness since long read/write latencies cannot be

tolerated. Consequently, entity state updates (i.e., writes to a database record) are

applied locally before propagation to other system nodes. Receipt of state updates is

delayed due to network latency, queuing, and system architecture [21]. Thus, not all

nodes see the same simulation state at the same time. If updates cease, the system

will eventually become consistent [50]. As such, LVC simulations can be viewed in

the same context as eventually consistent distributed datastores such as Amazon’s

Dynamo [10], Cassandra [28], or Megastore [5].

For any eventually consistent distributed database, a fundamental question is

“How eventual is eventual?” Common measures of eventual consistency are time

(how long does it take for readers to see the result of a write) and versions (how many

versions old is a given read result) [3]. For LVC simulations and other distributed

virtual environments (DVEs), entity deviation (e.g., Euclidean distance) from a “true”

value is a common measure of consistency [53, 2, 55].

Quantifying the numerical error associated with eventual consistency is the first

key challenge for LVC simulations. There is a growing body of literature characteriz-

ing the consistency of distributed databases such as Dynamo and Cassandra [52, 41, 4],

these works focus on time or version staleness as the measure of consistency. More-

2

www.manaraa.com

over, distributed databases are designed to support read-heavy workloads, are often

distributed across a datacenter rather than geographically, and tolerate relatively long

(on the order of a few seconds) responses to an update. In contrast, LVC simulations

are more concerned with numerical error, have a balanced workload due to reading

and writing all entity states at each time step, are distributed geographically, and re-

quire rapid response and synchronization times to minimize user frustration and state

divergence. Consequently, existing research into the effects of eventual consistency

on distributed databases is of limited applicability to LVC simulation.

A second challenge lies in assessing whether inconsistencies in the replicated state,

reflected as measurement errors, lie within a specified precision tolerance. This as-

sessment must be conducted during system design to ensure the simulation is capable

of meeting precision requirements. Additionally, it must occur during execution to

provide a quantification of the uncertainty associated with each measurement. Quan-

tifying the uncertainty associated with the simulation state is crucial to assessing the

quality of simulation outputs [38].

A third challenge for LVC simulations is assessing the quality of measurements

without a known truth value, particularly for a discrete value [36]. This is especially

true for derived quantities that depend on inconsistent state data such as collisions

and weapons effects. In this case, each interacting node may compute a result that

is correct according to its state replica yet different from other interacting nodes.

Furthermore, the uncertainty can vary based on the node taking the measurement.

This research presents a model of LVC simulation data quality in terms of plau-

sible outcomes for entity interactions. A key observation is that inconsistent data is

usable if the inconsistency is small enough that all interacting parties agree on the

outcome. If such a limit can be specified, then a priori estimates of the data quality

can be obtained from the model. Thus, this work defines plausibility in terms of

3

www.manaraa.com

the inconsistency of simulation state between replicas and an a priori limit on the

maximum allowable inconsistency. If the inconsistency exceeds the limit, then one

participant in the interaction may view the results as implausible. This can lead

to user disengagement or erroneous measurements. A formal model of plausibility in

LVC simulations is presented and a method of estimating the probability of exceeding

the plausibility limit based on statistical tolerance intervals is derived. Estimation

of exceedance probabilities provides insight into a simulation’s ability to meet its in-

teraction requirements and fitness for purpose (i.e., entertainment, training, or T&E

). Moreover, computing exceedance probabilities provides a quantification of the un-

certainty associated with a measurment taken from an LVC simulation – that is, one

can say that a given measurement is within a certain tolerance with probability p and

confidence 1 − α. Experiments with World of Warcraft player traces show that the

model of plausibility and exceedence probability estimates presented here are effective

in determining the probability a particular entity interaction is within its associated

plausibility limit.

Plausibility as defined here is one component of a simulation’s quality of entertain-

ment or service [44]. Other typical components of quality of service are latency and

responsiveness. Both latency and responsiveness relate to a user’s overall satisfaction

with an LVC simulation, while plausibility is related to the correctness of outcomes.

Latency and responsiveness issues have been well studied, while the literature on plau-

sibility of interaction outcomes is relativley sparse. Consequently, this work presents

novel and complementary methods to ascertain the quality and correctness of LVC

simulations.

The remainder of this work is organized as follows: Chapter II provides an

overview of the relevant literature. Chapter III outlines a stochastic model of plausi-

bility. Chapter IV presents the results of model validation experiments. Chapter V

4

www.manaraa.com

concludes. The appendices include several published conference and journal articles

comprising the bulk of this research.

5

www.manaraa.com

II. Background

This chapter provides a review of the literature related to assessing plausibility in

distributed virtual environments and LVC simulation. It discusses general consistency

models for distributed systems, including replicated datastores, and the Consistency-

Availability-Partition Tolerance (CAP) theorem. This discussion is followed by a

review of the DVE state synchronization literature. Finally, some background on

statistical tolerance intervals is presented.

2.1 Consistency Models

Maintaining consistency across data replicas is a fundamental issue in distributed

systems [47]. Data is replicated to enhance reliability and improve performance.

Replicating data enhances reliability by making multiple copies available to clients; if

one copy is unavailable, the client can read or write to another replica immediately.

This allows system nodes to be taken down for maintenance and reduces the impact

of unforeseen network partitions. System performance can be improved by replicating

data near clients; locality matters. Placing copies of the data near clients improves

read/write response times. Additionally, it can improve system scalability by spread-

ing processing load over multiple servers. Tanenbaum and Van Steen [47] provide the

standard text on consistency in distributed systems. Their work discusses data and

client-centric consistency models, replica management techniques, and consistency

protocols.

The advent of commercially available distributed key-value stores such as Ama-

zon’s Dynamo [19], Cassandra [28], and Project Voldemort [13] has led to renewed

interest in eventually consistent replication models. Terry [49] provides an overview

of six consistency guarantees found in modern replicated database systems. They are

6

www.manaraa.com

based on a simple model in which clients read and write a generic data store. The

data store is replicated across a set of servers and clients may access it concurrently.

Writes are ordered and eventually received and applied by all servers. Reads return

previously written values, although the value returned by a read operation may not be

the latest value written. Consistency guarantees dictate the allowable return values

for a read and are defined by the set of previous writes visible to a particular read

operation. The consistency guarantees described by Terry are listed in Table 1 and

summarized in the following sections.

Table 1. Consistency Guarantees [49].

Strong Consistency See all previous writes.
Eventual Consistency See subset of previous writes.
Consistent Prefix See ordered sequence of previous writes.
Bounded Staleness See all “old” writes.
Monotonic Reads See increasing subset of writes.
Read My Writes See all writes performed by reader.

Strong Consistency.

Strong (or absolute) consistency guarantees that a read of a data object returns the

last value written to it. This is clearly a desirable characteristic for DVEs as it ensures

replicas remain perfectly aligned and the illusion of a single shared environment is

maintained. However, strong consistency comes at the cost of reduced availability

and throughput as the database system must replicate any write operation before

processing further requests.

Eventual Consistency.

Eventual consistency is the weakest consistency model described by Terry [49],

guaranteeing only that the database replicas will be consistent at some future time

after all updates have ceased. Consequently, a read operation is allowed to return

7

www.manaraa.com

any value that has ever been written. While this may seem to be an overly loose

model of consistency, in practice, eventual consistency is often good enough [26] and

can perform quite a bit better than strongly consistent systems [1].

Consistent Prefix.

Consistent prefix guarantees that a reader will see an ordered sequence of writes

beginning with the first write to the data store. It ensures that the data returned by

a read operation was actually written at some point in the past.

Bounded Staleness.

Bounded staleness ensures the result of a read operation is not too out of date

[47, 49]. Staleness is typically defined in terms of a time bound T , e.g., 5 minutes.

Reads are guaranteed to return values written T minutes ago (or more recently).

Other definitions of staleness are possible; for example, k-staleness returns a value

within the last k versions rather than from a fixed time window [4].

Monotonic Reads.

Monotonic reads is a session guarantee that applies to sequence of reads performed

by a particular client [50]. Like eventual consistency, monotonic reads allow reading

arbitrarily stale data; however, it guarantees the results of a sequence of reads is

increasingly up-to-date.

Read My Writes.

Read my writes also applies to a sequence of reads performed by a particular client

[47, 49]. This consistency model guarantees that a reader sees the effect of its own

writes or writes performed more recently by another client. Read my writes provides

8

www.manaraa.com

no guarantees beyond eventual consistency for data read by other clients or for clients

who have performed no writes.

To illustrate these consistency models, consider the simple distributed virtual

environment depicted in Figure 1. Here, two clients are connected via a network.

Each maintains a model of a single entity represented by the square and triangle, as

well as a replica of the entire state database. For simplicity, assume the entities are

constrained to movement in a single dimension as illustrated in Figure 2. Furthermore,

assume the state data of interest is the entity position.

Figure 1. A simple two-entity distributed virtual environment.

Figure 2. State changes for a simple two-entity distributed virtual environment.

Each client writes to its local database replica as it updates the position of its

9

www.manaraa.com

modeled entity. Updates are propagated to the other client in some fashion; the

details of the replication protocol are irrelevant for this example. Table 2 presents a

sequence of writes to the DVE database, i.e., state updates. The effect of these writes

on the DVE state is illustrated in Figure 2.

Table 2. A sequence of writes for a simple distributed virtual environment.

t = 0 Write(“Square”,1)
t = 1 Write(“Square”,2)
t = 2 Write(“Triangle”,-1)
t = 3 Write(“Square”,3)
t = 4 Write(“Triangle”,-2)

For each consistency model, Table 3 presents the possible results of issuing a read

after all writes have taken place at t = 4. Each ordered pair in the table represents

the state of the DVE. The first coordinate is the triangle entity’s position, and the

second is the square’s position. The correct state at t = 4 is shown in bold. Stale

states that were correct at some time in the past (t < 4) are shown in italics. States

that never existed but may be returned by a consistency model are shown in plain

type.

Table 3. Possible read results for each consistency model. Correct states are shown in
bold. Stale states are shown in italics. Invalid states are shown in plain type. Ordered
pairs represent (triangle position, square position).

Strong Consistency (-2,3)
Eventual Consistency (0,0), (0,1), (0,2), (0,3), (-1,0), (-1,1), (-1,2), (-1,3),

(-2,0), (-2,1), (-2,2), (-2,3)
Consistent Prefix (0,0), (0,1), (0,2), (-1,2), (-2,3)
Bounded Staleness (T = 2) (0,2), (-1,2), (-1,3), (-2,2), (-2,3)
Monotonic Reads (after reading (0,2)) (0,2), (0,3), (-1,2), (-1,3), (-2,2), (-2,3)
Read My Writes
Square (writer) (0,3), (-1,3), (-2,3)
Triangle (0,0), (0,1), (0,2), (0,3), (-1,0), (-1,1), (-1,2), (-1,3),

(-2,0), (-2,1), (-2,2), (-2,3)

All of the consistency models may return the correct current state of the envi-

ronment; however, only the strong consistency model is guaranteed to do so and in

10

www.manaraa.com

fact, this is the only value strong consistency may return. Eventual consistency, on

the other hand, may return any combination of values that were written, even if the

resulting state never actually occurred.

This latter property of reading states that never existed is shared by the bounded

staleness, monotonic reads, and read my writes models to varying degrees. These

models differ chiefly in the size of the set of possible read values. Consistent prefix,

on the other hand, guarantees all possible read values at least existed in the database

at some point although the returned value may be arbitrarily old.

Note that in addition to returning non-existent states, the weak consistency mod-

els can return results that violate causality. In practice, this can be mitigated by

imposing a global ordering on messages via GPS synchronization, vector clocks [29],

or similar.

2.2 CAP Theorem

The Consistency-Availability-Partition Tolerance (CAP) theorem [6], sometimes

called Brewer’s conjecture or Brewer’s theorem, establishes a trade-space for three

fundamental properties of distributed systems. These properties are 1) consistency

– do all parts of the distributed system have the same data value at the same time,

2) availability – is the system available for reading or writing on demand, and 3)

partition tolerance – will the entire system cease functioning if one or more system

nodes are isolated. Brewer set these properties in opposition to one another (i.e., as

trade-offs) and conjectured that only two properties could be fulfilled at any given

time, and then only by relaxing the requirement for the third property. Gilbert and

Lynch [15] provided a proof of Brewer’s conjecture in 2002.

As an example, consider a two-node distributed datastore. Suppose the network

between them is severed. Then the system can either continue to accept reads/writes

11

www.manaraa.com

to either node, sacrificing consistency, or it can force all read/writes to occur on a

single node, sacrificing availability.

2.3 State Synchronization

The problem of state synchronization in distributed virtual environments, of which

LVC simulations are a subset, has been well-studied. This section presents an overview

of the existing literature on error in distributed virtual environments and state update

and synchronization policies.

Types of Error in Distributed Virtual Environments.

Several types of error arise in distributed virtual environments as a consequence

of the loose consistency guarantees provided by the state database. Let es(t) and

ec(t) be the state of some entity as stored in the server and client database replicas

at time t. For any entity state for which there is an appropriate norm (e.g., position),

we can define the spatial error at time t, SE(t), as the distance between the server

and client representations of the entity state. That is,

SE(t) = ‖es(t)− ec(t)‖ (1)

Aggarwal, et al. [2] assumes a state update policy based on server-side dead

reckoning and decomposes the spatial error into two components: dead reckoning

error and export error. Once again, let es(t) and ec(t) be the state of entity e as

represented in the server and client state databases. Further, assume the server also

maintains a dead reckoned version of e as a means of predicting the spatial error

at the client. Let ês(t) represent this approximation (or estimate). Then the dead

reckoning error DE(t) is given by

12

www.manaraa.com

DE(t) = ‖es(t)− ês(t)‖ (2)

If at any time t the dead reckoning error exceeds some threshold, h, an update is

sent to the client and ês(t) is reset to the true entity state es(t). Due to propagation

delay factors such as network latency and processing time at the client, the entity

state at the client will differ from the dead reckoned approximation at the server, i.e.,

ês(t) and ec(t) are not necessarily equal – ês(t) is an estimate of ec(t). This difference

is termed the export error, EE(t), and is given by

EE(t) = ‖ês(t)− ec(t)‖ (3)

The total spatial error is thus the sum of the dead reckoning error at the server

and the export error at the client, i.e.,

SE(t) = ‖es(t)− ec(t)‖ = DE(t) + EE(t) (4)

Integrating spatial error with respect to time yields a consistency measure known

as time-space inconsistency (TSI) [55], i.e.,

TSI(t0, t1) =

∫ t1

t0

SE(t) dt (5)

and draws an equivalence between large spatial errors of short duration and small

errors of long duration. TSI has been used as the basis of a number of state update

scheduling algorithms and policies [48, 30, 33, 31, 32, 34]. Most of these policies

employ some form of server-side dead reckoning; consequently, the TSI can still be

decomposed into dead reckoning and export errors.

There are some drawbacks to the use of TSI as an error measure. First, for

certain classes of entity motion, TSI can grow without bound [42]. Second, choosing

13

www.manaraa.com

a dead reckoning threshold can be somewhat counter-intuitive. Finally, and of most

importance to DVEs in a test and analysis context, the conflation of short duration,

large distance errors with long duration, short distance errors can make it difficult to

determine if a measurement based on the replicated state is within tolerable limits.

A second form of error arises with respect to the age of a state variable. Hodson

[21] defines the correctness of a variable as a function of a time interval – a state

variable is accurate or valid for a period of time after being updated. This period of

time is called the validity interval. A variable is deemed to be temporally consistent

if the time of its last update, tL, plus its validity interval, tV I , is greater than or equal

to the current time, i.e., if tL + tV I ≥ t [20].

The temporal consistency of a state variable as seen by a client can be measured

by calculating the mean and variance of its age in the client’s state database. Figure

3 illustrates how a state variable ages at the client. An update received at ti may

have already aged due to transmission delays; in any case, the variable ages linearly

until the next update is received. The interarrival time of the updates is denoted by

λi and there are N aging intervals.

Figure 3. Aging of distributed state data [20].

The mean age of the entity state as seen by the client is given by

µec =
1

tN

N∑

i=1

(
λ2i
2

+ αi−1λi

)
(6)

where ec is the entity state as represented in the client’s state database, λi is the

14

www.manaraa.com

interarrival time, and tN is the total elapsed wall-clock time over N intervals [20].

The variance of the entity state’s age at the client is given by

σ2
ec = mse− µ2

ec (7)

where

mse =
1

tN

N∑

i=1

(
λ3i
3

+ αi−1λ
2
i + α2

i−1λi

)
(8)

The validity interval is determined by properties associated with how the state

changes in relation to time. For any two interacting entities, there is a maximum

acceptable error beyond which the interaction fails to behave correctly. For instance,

spatial errors that are too large may cause a collision detection routine to trigger

late, resulting in intersecting entities rendered to the display. Simulations supporting

analysis can ill afford such imprecision, particularly for interactions comprising the

system-under-test.

Given a precision requirement for each interaction supported by the simulation,

the accuracy of the state database can be defined as follows. A replica is accurate

with respect to entity e at time t if the spatial error for the entity is less than its

associated precision requirement. This is a binary condition; the replica is either

accurate or not. Formally, the accuracy at client c with respect to entity e is given

by

Ae(t) =





1 ‖es(t)− ec(t)‖ ≤ p

0 otherwise

(9)

where es(t) is the entity state at the server, ec(t) is the entity state at the client, and

p is a (spatial) precision requirement.

15

www.manaraa.com

The overall accuracy Ā(t) of a client is given by the mean accuracy over all entities,

i.e.,

Ā(t) =
1

|E|
∑

e

Ae(t) (10)

where |E| is the total number of entities in the simulation. Calculating the mean

and variance of Ae(t) and Ā(t) over time provides summary measures of a particular

client’s state database accuracy.

State Update Policies.

A variety of state update mechanisms and policies have been proposed and in-

vestigated by the research community. The most basic policies are round-robin and

periodic policies[45, 46]. Round-robin state update simply places each client in a cir-

cular queue based on the time it was last sent an update. At each frame, the server

updates as many clients as possible, starting with the client least recently updated.

This policy tends to perform poorly in systems where the total number of clients is

much larger than the number of clients that can be updated at each simulation frame.

Periodic update policies send updates to clients at defined intervals. Note that the

round-robin policy is in fact periodic, however, much more complex periodic schemes

are possible. For instance, some DVE systems provide state update data streams

with multiple periods for the same entity. This allows clients to choose how often

they receive updates – clients whose entities are not interacting with the server’s

choose a long period stream, while clients needing more state accuracy can choose a

high frequency stream. See [37] for a review of this and other interest management

techniques.

Mauve [36] proposed the use of local lag policies to improve state consistency

among nodes in distributed virtual environments. Local lag delays the effect of user

16

www.manaraa.com

inputs at the local node while sending a state update to the remote nodes. Ideally,

the lag applied locally is equivalent to the propagation delay of the state update

message and all nodes see the effects of the input simultaneously. Practice is rarely so

accommodating since each client may have a different amount of delay, packets may be

dropped, and network latency can vary. Note that local lag degrades responsiveness

in favor of improved state consistency.

The DIS standard specifies the use of dead reckoning algorithms to estimate state

consistency between system nodes. The vast majority of research on data consistency

issues in DVEs focuses on improving and optimizing dead reckoning for a variety

of conditions. An early effort by Cai, et al. [7] proposed an auto-adaptive error

threshold based on areas of interest and sensitive regions around each entity. The area

of interest is defined as a circular region around an entity in which the entity requires

increased consistency. The sensitive region is a smaller circular region. If one entity

moves into another’s sensitive region, a collision or some other kind of interaction

is likely. Thus the consistency requirements inside an entity’s sensitive region are

higher still. The authors define four threshold levels based on the relative position

and overlap of entities and their regions. They conducted a series of experiments

using a simulated distributed environment and measure the average spatial error

and number of messages for differing numbers of entities. Their adaptive threshold

algorithm shows an improvement in both the number of messages sent and the average

error. Unfortunately, they provided no guidance for choosing the threshold values for

their algorithm. This is important since the superiority of their approach depends on

these choices. In general, however, one can expect the adaptive algorithm to strike

an adequate balance between consistency and network utilization while showing an

improvement over standard dead reckoning.

Liu [35] explored the use of communication subgraphs to determine the optimal

17

www.manaraa.com

synchronization interval for DVEs with an upper bound on spatial error. He com-

pared the use of several subgraph generation algorithms to bound the maximum delay

between nodes in the virtual environment. The optimal synchronization interval was

determined using a discrete time Markov chain model of the spatial error. Once

the optimal interval is found, the network utilization for each of the communication

subgraphs can be computed.

Delaney, et al. [11] proposed a hybrid algorithm that pairs the conventional

dead reckoning model with an experimentally derived model of the user’s long term

strategy. The goal of the hybrid technique is to reduce network utilization at a given

threshold level. Their work shows an improvement in the number of messages sent,

albeit for a relatively large spatial error threshold.

Yu, et al. [54] consider the problem of allocating bandwidth to nodes in order

to minimize the spatial error, subject to time-varying bandwidth constraints. They

construct the problem as a constrained convex optimization problem and apply La-

grangrian relaxation to make the trade-off between consistency and network utiliza-

tion. Minimization of the relaxed problem is accomplished with binary search and

predictive model of bandwidth consumption based on recent history. Their work pro-

vides an empirical look at the fundamental DVE trade-off between consistency and

bandwidth consumption. Although they describe in general terms a network aware

bandwidth allocation algorithm, and provide results showing it outperforms uniform

and proportional allocations, the algorithm is not specified in detail.

Note the preceding works attempt to optimize dead reckoning with respect to

network consumption rather than consistency. Excessive bandwidth consumption is

generally not an issue except when scaling a DVE to massive numbers of clients.

In many practical scenarios, the number of clients is bounded and minimizing the

number of messages is not required – after all, unused bandwidth is wasted bandwidth.

18

www.manaraa.com

The remainder of this section discusses techniques that specifically optimize dead

reckoning for consistency.

Building off Zhou et al.’s work on time-space inconsistency [55], Roberts et al.

proposed the use of a time-space threshold instead of a spatial error threshold for

dead reckoning [43]. They begin by noting that simple spatial thresholds can lead

to unbounded inconsistency if the entity deviates from the dead reckoned path but

remains inside the error threshold. Using a time-space threshold mitigates this prob-

lem, however, doing so can lead to large spatial errors over short time periods. The

authors demonstrate a hybrid threshold metric that avoids both of these issues.

Tang and Zhou [48] developed a consistency aware update scheduling algorithm

for centralized, single server DVEs with network capacity constraints. They begin by

deriving optimal update schedules to minimize the impact of time-space inconsistency

on user perceptions, noting that these schedules depend on the network delay and

entity trajectories. The latter, of course, depend on user inputs to the simulation.

The authors then present an update scheduling algorithm that estimates the time-

space inconsistency at each client and sends updates to the clients with the largest

error, subject to network capacity constraints. Any clients that are not updated will

necessarily have a larger inconsistency during the next frame and will have a higher

priority for update. Their algorithm shows substantially better performance than

more naive scheduling algorithms such as round-robin or conventional dead reckoning.

Li and Cai [31] extend the discussion to a multi-server environment and frame the

problem as one of determining the optimal update period for each replica. They

formulate the problem as convex optimization problem with inequality constraints

and apply the barrier method for solution.

Both of the foregoing methods assume static network conditions with no possibility

of message loss. Li et al. [32] consider the effects of message loss on update scheduling;

19

www.manaraa.com

however, they ignore the effects of network delay. They develop scheduling algorithms

that compensate for message loss by sending updates when the time-averaged incon-

sistency with loss exceeds the inconsistency without loss. Li, et al. [34] propose an

update scheduling algorithm that modifies the dead reckoning threshold based on

predicting network conditions and estimating whether the system can compensate

for the effects of network delay and message loss. If the delay and loss rate can be

compensated, the threshold is modified accordingly; if not, an update message is sent

immediately.

2.4 Tolerance Intervals

Tolerance intervals are statistical intervals containing a specified proportion p of

a sample population with confidence 1 − α [17]. They are useful in drawing conclu-

sions about a large number of future samples based on data from a random sample.

One-sided tolerance bounds are often used to calculate exceedance probabilities, that

is, the probability that a random variable exceeds a specified value [27]. They are

inversely related to confidence bounds. Tolerance intervals can be calculated non-

parametrically using Wilke’s algorithm and order statistics. Algorithm 1 presents

Matlab code for calculating non-parametric tolerance intervals using Wilke’s algo-

rithim.

2.5 Summary

Maintaining consistency across replicas is a fundamental concern for designers of

LVC simulations. Several consistency models spanning the spectrum from eventual

to absolute consistency are available; however, none but absolute consistency is guar-

anteed to provide the current state of the database in response to a read request at

all replicas. State consistency is a desireable characteristic for LVC simulations to

20

www.manaraa.com

Algorithm 1 Wilke’s Algorithm for non-parametric tolerance intervals.

f unc t i on [lower , upper]= npto l2 (x , alpha ,P)

n=length (x) ;
s o r t ed=s o r t (x) ;
upper=repmat (max(x) , 1 , l ength (P)) ;
lower=repmat (min (x) , 1 , l ength (P)) ;

f o r i =1: l ength (P)
r=bino inv (alpha , n,1−P(i)) ;
s=n−r +1;

i f (r>=1)
lower (i)= so r t ed (r) ;

end

i f (s<=n)
upper (i)= so r t ed (s) ;

end
end

ensure the illusion of a shared virtual environment. However, LVC simulations have

strict real-time availability requirements due to the inclusion of live assets and must

continue running if one or more sites or nodes are removed from the network. As a

consequence of the CAP theorem, these availability and partition tolerance require-

ments preclude absolute consistency between all state database replicas.

Several algorithms have been developed to minimize the inconsistency between

replicas. These include simple dead-reckoning schemes, local lag, consistency aware

state update algorithms, methods based on time-space inconsistency, and attempts

to predict network conditions and the user’s long-term strategy. Importantly, none

of the existing state update algorithms provide an assessment of how consistent the

state database replicas are at any point in time. Moreover, depending on the spe-

cific consistency guarantees provided by the underlying distributed system, they may

allow reads to a replica to return states that are erroneous and were never written

21

www.manaraa.com

to the database. Consequently, the results of inter-entity interactions may appear

implausible to one or more users of the simulation.

If limits are placed on the maximum allowable state divergence for a given entity

interaction to ensure plausible outcomes, tolerance intervals can be applied to predict

how often an LVC simulation is expected to stay within the limits with a specified

confidence. The next chapter develops a prediction method based on these plausibility

limits.

22

www.manaraa.com

III. Modelling Plausibility in LVC Simulation

LVC simulations are geographically distributed, fully replicated database appli-

cations with real-time constraints. The inclusion of man-in-the-loop simulations and

actual live (real-world) assets forces a preference for system availability and the abil-

ity to continue operating if one or more subordinate simulations are removed from

the system. Consequently, LVC simulations cannot guarantee absolute state con-

sistency across replicas due to the CAP theorem. The lack of absolute consistency

raises the possibility of two interacting entities observing different outcomes for a

given interaction – an undesireable characteristic that can lead to user frustration

and disengagement [8] or erroneous conclusions for a T&E event.

Useful results can be obtained from an LVC simulation if the inconsistencies are

small enough to allow each entity to accept the outcome of an interaction (i.e., deem

the outcome plausible) regardless of their particular view of the situation. That is,

if the result obtained from an interaction is plausible given the state of each entity’s

replica, then the state inconsistency is minor enough to be ignored. This chapter

presents a formal definition of plausibility for LVC simulations and a simple stochastic

model suitable for estimating how likely the result of an interaction will be plausible.

3.1 LVC Architecture

Each node in an LVC simulation hosts one or more entities representing objects

such as tanks or aircraft. Entities represent real-world objects such as an aircraft

on a training range (live entities), man-in-the-loop simulators (virtual entities), or

wholly simulated assets (constructive entities). Nodes are responsible for processing

user inputs, computing physics models, and maintaining state for their hosted entities.

Additionally, nodes send entity state updates to other nodes so that each can maintain

23

www.manaraa.com

a representation of the overall simulation state. In the context of a single entity, the

hosting node is termed the server while all other nodes are clients or replicas. Note

that each node in the system acts as both server and client – a node is the server for

each entity it simulates and a client for all others. This is sometimes referred to as a

serverless architecture.

Simulation state data is divided into two types: 1) static and 2) dynamic. Static

state data includes items such as terrain geometry and other information that does

not change over the course of the simulation. Static state is usually distributed

to all nodes prior to beginning the simulation. Dynamic state data consists of any

information about the entities or environment that can change over time such as entity

position and orientation or weather. Dynamic state may be discrete or continuous.

The sharing of dynamic state between nodes allows users to interact with one another

as if they inhabit the same virtual space.

In order to maintain dynamic shared state, LVC simulations employ a fully repli-

cated, eventually consistent distributed database. Each record in this database holds

the state data for a single entity. Nodes host replicas of the state database. Nodes

write only to the records corresponding to the entities they host; all other records are

read-only. Records are updated across replicas according to some policy – common

policies include sending updates periodically or when a predicted error crosses some

threshold value. The policy need not be the same for all replicas. The state database

is eventually consistent in the sense that once all user inputs cease, all replicas will

converge to the same state. In the meantime, reads from different replicas may return

different values and in fact may return any value written since the beginning of the

simulation [49].

Eventually consistent databases are employed by LVC simulations because sup-

porting live and virtual entities imposes real-time processing constraints in order to

24

www.manaraa.com

ensure acceptable levels of fidelity. Response times to user inputs for man-in-the-

loop simulations should be less than 100 ms in order to avoid user-induced oscillation

effects [37]. These requirements, coupled with minimum data propagation delays,

imply that absolute consistency in distributed real-time simulation is unachievable.

Only after all inputs have ceased can each replica be guaranteed to have correct state

data. Consequently, client-side state prediction algorithms are widely deployed to

mitigate state errors between receiving updates from the server.

Figure 4 illustrates the basic structure of an LVC simulation. At the top of the

figure are two entities, in this case two aircraft. These entities interact with one

another in the virtual environment; for example, the fighter may try to intercept

the bomber. The entities and their interactions are simulated by a pair of nodes

communicating across a network as illustrated in the middle portion of Figure 4. Note

that each simulation node acts as a server for its own entity and client for the other

entity. Finally, the bottom portion of the figure depicts the dynamic shared state of

the simulation, e.g., positional information. The state database consists of a position

record for each entity. Records may be inconsistent, depending on network latency

and other factors, as illustrated by the arrows labeled “Truth” and “Perceived” state.

3.2 Modeling Plausibility

The CAP theorem has an important consequence for LVC environments related

to the plausibility of interaction outcomes as observed at the server and clients. Since

LVC simulations prioritize availability and partition tolerance above consistency, state

divergence between the server and client is virtually guaranteed. Frequently, this

divergence is of little consequence. However, when the server and client must inde-

pendently compute some result based on the same input variables at the same time,

problems with the plausibility of outcomes can arise due to state divergence. For

25

www.manaraa.com

Figure 4. Entities, implementation, and dynamic shared state [23].

instance, if the interaction of interest is collision detection and the positional state

of involved entities is not consistent, one node may detect a collision while another

may not. This problem is exacerbated when outcome arbitration is completed – one

node’s version of the state may well be overwritten by a completely different result,

thus yielding an implausible outcome. Steed and Oliveira refer to this as joint plau-

sibility, i.e., the notion that two or more users accept that they are viewing the same

simulation of a shared space [46].

Note that plausibility does not imply that the server and client compute identical

interaction results. Rather, joint plausibility requires that the computed results be

close enough that users are willing to accept the arbitrated results and not reject

them out of hand as nonsensical. That is, dead men must not keep shooting [36] due

to a divergence in states between client and server. The maximum tolerable state

divergence resulting in plausible outcomes is interaction dependent [24]. This section

presents formal definitions and a simple stochastic model of plausibility.

Definition 1 Let ei and ej represent entities within an LVC simulation. Then the tu-

26

www.manaraa.com

ple I = (ei, ej, L) is called an interaction and specifies a state dependence relationship

from ei to ej.

In this relationship, the node hosting ej is the server and the node hosting ei is the

client. The quantity L is called a plausibility limit. Note the relationship is one-

way in order to allow modeling of asymmetric entity interactions, e.g., long-range vs

short-range sensors.

Definition 2 Let Sc and Ss represent the state database replicas on the client and

server, respectively. The state divergence, D, is given by

D(Sc, Ss) = ‖Sc − Ss‖

for some appropriately defined distance measure; i.e. Euclidean distance for entity

position state.

The outcome of an interaction I at time t is plausible if Dt(Sc, Ss) ≤ L.

Note that plausibility is a component of quality of entertainment [44] or quality of

service; however, it is qualitatively different than the latency issues typically studied

by distributed virtual environments researchers. It is possible for an LVC simulation

or other DVE to deliver jointly plausible results while exhibiting unacceptable latency

or responsiveness. For example, an LVC simulation often can be designed to deliver

absolute consistency and therefore plausible outcomes; however, the responsiveness

of such a simulation may be unacceptable to its users, particularly if it is distributed

over large distances. Similarly, the algorithms described in Chapter II are designed to

maximize state consistency and mask latency in order to improve quality of service.

However, not all latency can be masked [2] and so plausibility issues may still arise.

These definitions lead to a simple two-state stochastic model of interaction plau-

sibility as illustrated in Figure 5. With respect to an on-going interaction I, the

27

www.manaraa.com

state divergence D(Sc, Ss) is either within the plausibility limit L (depicted by the

left-hand state) or exceeds the limit (the right-hand state). If the divergence is within

the plausibility limit, then the outcome of the interaction on the client and server are

in agreement by convention.

Figure 5. A simple two-state model of interaction plausibility.

Computation of the state transition probabilities associated with this model is

difficult in general due to a strong dependence on the server state dynamics and

the coupling between server and client states. Factors influencing the plausibility of

an interaction and the dependencies between them are illustrated in Figure 6. As

previously noted, the plausibility of an interaction outcome is a direct function of the

server state, the client state, and an a priori limit on maximum tolerable error. Server

state depends on the model being simulated (e.g., an F-16) and the user inputs to

that model. Client state depends on the server state, end-to-end latency, and message

loss rates. Note that latency and message loss are random variables and may not be

directly observable by the LVC simulation. For entity position state, user input can

be modeled as a random acceleration variable.

3.3 Computing Plausibility Exceedance Probabilities

Exceeding the plausibility limit for an interaction between two or more entities

yields a loss of joint plausibility and incorrect results for at least one view of the

world state. For entities with sufficiently smooth and well-behaved dynamics, the

probability of exceeding the plausibility limit can be computed directly. Assuming

28

www.manaraa.com

Figure 6. Factors influencing interaction plausibility and the dependencies between
them.

message loss is negligible and state updates are sent from the server to the client

periodically, the probability of exceeding the plausibility limit L for an interaction

I = (ei, ej, L) depends primarily on the rate of change of the server state and the

latency between the server and client.

Let the real path, R(t), represent the true position of ej at any time t. R(t) is a

function of the user input and physics models employed by the simulation node nj

hosting ej. At intervals, nj sends a message updating the replica of ej at the source

node ni. These state updates coupled with any dead reckoning algorithms in use at

ni yield the placed path, P(t). This path represents ei’s perception of ej’s position at

any time t. The difference between the real and placed paths

E(t) = R(t)− P(t) (11)

is the spatial error at time t.

Moreover, the position of the entity on the placed path after ∆t seconds can be

29

www.manaraa.com

approximated using Taylor series expansion [18],

R(t+ ∆t) ≈ R(t) +
dR
dt

∆t+
1

2

d2R
dt2

∆t2

Letting s(t) = R(t), v(t) = dR
dt

, and a(t) = d2R
dt2

yields the familiar kinematic

equation

R(t+ ∆t) ≈ s(t) + v(t)∆t+
1

2
a(t)∆t2

where s(t), v(t), and a(t) represent the entity’s position, velocity, and acceleration at

time t.

The placed path at time t + ∆t depends on the dead reckoning algorithm in use

at the replica node. If no dead reckoning is employed, then

P(t+ ∆t) = P(t) = s(t)

If first-order dead reckoning is employed, then

P(t+ ∆t) = s(t) + v(t)∆t

Combining the expressions for the real and placed paths yields the following ex-

pressions for the spatial error at time t+ ∆t:

E(t+ ∆t) = v(t)∆t+
1

2
a(t)∆t2 (12)

in the case of no dead reckoning and

E(t+ ∆t) =
1

2
a(t)∆t2 (13)

in the case of first-order dead reckoning.

30

www.manaraa.com

If the entity’s maximum velocity and acceleration are known (a safe assumption)

and tupdate is the time the last update was sent, then the spatial error after receiving

the update can be bounded above as

E(tupdate + ∆t) ≤ vmax∆t+
1

2
amax∆t2 (14)

and

E(tupdate + ∆t) ≤ 1

2
amax∆t2 (15)

for the no dead reckoning and first-order dead reckoning cases respectively.

For a simulation employing dead reckoning, the temporal accuracy interval [25]

for a state update in the context of interaction I is computed as

∆t =

√
2 ∗ l
||amax||

(16)

Assuming state updates are sent from ej to ei periodically, the quantity ∆t specifies

the maximum time for which a state update is accurate. After ∆t seconds, the update

will have been superseded by another and the spatial error will have exceeded the

tolerance of interaction I. Note that periodic state updates have been shown to result

in optimal state consistency [48]. Thus, our concern is to find the largest inter-update

period p that meets the error tolerance for interaction I.

To do so, we note that the temporal accuracy interval is the difference between

the time the last update was sent, tupdate, and the time of its use, tuse. That is,

∆t = tuse − tupdate

Noting that the current value of the state becomes invalid when the next update

is sent and letting d represent the total update propagation delay (accounting for net-

31

www.manaraa.com

work latency, queuing, and internal delays associated with simulation architecture),

the largest accuracy interval is obtained when

∆t = tupdate + p+ d− tupdate (17)

To summarize, let ei be an entity interacting with entity ej. Suppose the inter-

action has some maximum spatial error tolerance l. Let ||amax|| be the maximum

acceleration of ej and d be the state update propagation delay. Then the maximum

period between state updates from ej to ei is given by

p =

√
2 ∗ l
||amax||

− d (18)

Guarantees on system latency require establishing a messaging policy such that

1

2
||amax||(p+ d)2 ≤ l, (19)

where a is the acceleration, p is the inter-update period, d is the delay, and l is

the plausibility limit. Assuming ideal system design involves maximizing the inter-

update period to minimize the number of messages sent, this research focuses on the

plausibility limit in Equation 19 being exactly met, not exceeded, or

1

2
||amax||(p+ d)2 = l. (20)

Solving for p gives results in Equation 18, which is effectively the largest value of p

that meets the plausibility limit for specific values of amax and d.

Within these equations, amax and d are independent random variables and l is a

constant set by the end users. As independent random variables, the joint distribution

32

www.manaraa.com

of amax and d is the product of their individual distributions, or

fA,D(a, d) = fA(a)fD(d). (21)

In this example problem, Amax ∼Double Exponential(0,σ2
1) andD ∼ Shifted Exponential(µ, σ2

2),

so

fA,D(a, d) =
1

2σ1
e
− |a|
σ1

1

σ2
e
− d−µ

σ2 . (22)

Since p is a function of amax, d, and l from Equation 18, a transformation can be

performed on fA,D(a, d) into fP,D(p, d). Let

g(p) = p =

√
2l

a
− d, (23)

from Equation 18, then

g−1(p) = a =
2l

(p+ d)2
. (24)

Using a univariate transformation,

fP,D(p, d) = fA,D(g−1(p), d)

∣∣∣∣
∂a

∂p

∣∣∣∣ .

Due to the change in monotonicity at a = 0, this transformation is actually the sum

of two transformations

fP,D(p, d) = fA,D(|g−1(p)|, d)

∣∣∣∣
∂a

∂p

∣∣∣∣ , a < 0

+fA,D(g−1(p), d)

∣∣∣∣
∂a

∂p

∣∣∣∣ , a ≥ 0

=
1

2σ1
e
−

∣∣∣∣ 2l
(p+d)2

∣∣∣∣
σ1

1

σ2
e
− d−µ

σ2

∣∣∣∣
∂

∂p

2l

(p+ d)2

∣∣∣∣+

33

www.manaraa.com

1

2σ1
e
−

2l
(p+d)2

σ1
1

σ2
e
− d−µ

σ2

∣∣∣∣
∂

∂p

2l

(p+ d)2

∣∣∣∣

=
1

σ1
e
−

2l
(p+d)2

σ1
1

σ2
e
− d−µ

σ2
4l

(p+ d)3
. (25)

Integrating over all values of d provides the marginal distribution of p

fP (p) =

∫ ∞

0

1

σ1
e
−

2l
(p+d)2

σ1

∗ 1

σ2
e
− d−µ

σ2
4l

(p+ d)3
∂d (26)

Recall, p was crafted to be the maximum inter-update period that still meets the

plausibility limit. Integrating from 0 to a particular value of p provides the probability

that p exceeds the required plausibility limit, or

α =

∫ p

0

∫ ∞

0

1

σ1
e
−

2l
(p+d)2

σ1

∗ 1

σ2
e
− d−µ

σ2
4l

(p+ d)3
∂d∂x (27)

34

www.manaraa.com

IV. Analysis and Applications

The models of interactions, error, and plausibility presented in Chapter III can

be applied in a variety of ways to assist conducting LVC T&E events. This chap-

ter presents the results of model validation experiments and explores some relevant

applications.

4.1 Model Validation

Validation of the plausibility model presented in Chapter III was conducted using

World of Warcraft player entity trace data obtained from the Game Trace Archive at

Delft University of Technology [16]. The traces were sampled at 1 second intervals

and consist of position information from 1302 players collected over a 24-hour period.

Figure 7 shows an excerpt from an entity trace. Entity velocity and acceleration

data were derived from the position traces. Figure 8 shows an example entity’s

trajectory through the virtual environment. Figure 9 plots the entity’s acceleration

as a frequency histogram normalized to a probability. Note that the majority of

accelerations are very close to zero, indicating either a stationary entity or straight-line

motion. This heavily skewed acceleration distribution is typical for player-controlled

entities moving through a virtual environment.

A random sample of entity traces were replayed through a simulator across a

range of expected parameter settings in order to ascertain feasible plausibility limits.

The simulator models an interaction between two entities and employs periodic state

updates and client-side dead-reckoning to minimize state inconsistency. Update la-

tencies ranged from 0.035 s (nominal cross-country latency) to 0.5 s. Update periods

ranged from 0.02 s (every frame for a simulation running at 50 Hz) to 0.3 s (the

maximum specified by DIS for loosely-coupled simulations). Spatial error between

35

www.manaraa.com

time, id, x, y, z, facing
63445145235, 0, -4643.46, -1077.76, 500.58, 3.13
63445145236, 0, -4643.46, -1077.76, 500.58, 3.13
63445145237, 0, -4643.46, -1077.76, 500.58, 3.13
63445145238, 0, -4643.46, -1077.76, 500.58, 3.13
63445145239, 0, -4643.46, -1077.76, 500.58, 3.13
63445145240, 0, -4643.46, -1077.76, 500.58, 3.13
63445145241, 0, -4643.46, -1077.76, 500.58, 3.13
63445145242, 0, -4643.46, -1077.76, 500.58, 3.13
63445145243, 0, -4643.46, -1077.76, 500.58, 3.13
63445145244, 0, -4639.1, -1075.05, 500.9, 0.64
63445145245, 0, -4633.43, -1070.19, 501.42, 0.73
63445145246, 0, -4633.43, -1070.19, 501.42, 0.73
63445145247, 0, -4633.43, -1070.19, 501.42, 0.73
...

Figure 7. Excerpt from a World of Warcraft entity position trace.

the server and client replicas was computed at each frame, i.e., every 0.2 s. 95% non-

parametric upper tolerance bounds for the spatial error were computed using Wilke’s

algorithm [17]. The resulting response surface is plotted in Figure 10.

For a combination of period and latency, the corresponding point on the response

surface represents the 95th percentile of the spatial error with 95% confidence. That

is, 95% of the error is expected to be less than or equal to the value of the surface at

any point with 95% confidence. Note that this is equivalent to a 95% lower confidence

bound on the 95th percentile.

Figure 11 plots the upper tolerance bounds as a contour plot. Contours are plotted

from 0.1 m to 1.1 m in 0.1 m increments. This is a useful way of visualizing plausi-

bility limits for a particular LVC simulation and can assist engineers with choosing

synchronization parameters and assessing expected data quality as part of the exper-

imental design process. For instance, an engineer designing an LVC experiment on

a network with 100 ms of latency and an update period of 100 ms should expect to

meet a plausibility limit of 0.07 m 95% of the time with 95% confidence. Note, how-

36

www.manaraa.com

Figure 8. Position trace of an example World of Warcraft entity.

ever, that the foregoing analysis applies only if the entity motion for the experiment

is similar to the World of Warcraft traces used to generate the contour plot.

Validation of the two-state stochastic plausibility model was conducted by Monte

Carlo simulation of the model as a discrete-time semi-Markov process. Jump time

distributions for the state transitions were generated empirically from a random sam-

ple of World of Warcraft entity traces with a plausibility limit of L = 0.1. Figures 12

and 13 plot the jump time probability distribution functions for two different laten-

cy/update period settings. Figure 12 assumes a latency of 0.035 and update period

of 0.020 while Figure 13 assumes a latency of 0.5 and an update period of 0.3. These

parameter settings are analogous to the extremes of the response surface plotted in

37

www.manaraa.com

Figure 9. Acceleration histogram for the World of Warcraft entity in Figure 8.

Figure 10.

The model was run for 1000 independent trials and the percentage of time (in

terms of frames) spent in the plausible state was recorded. Similarly, two validation

sets of 1000 entity traces were replayed through the simulator and the percentage of

time spent in the plausible state was recorded. Figure 14 plots the model predictions

and validation sets as a boxplot. Note that there is some difference between the

population means between the model prediction and validation sets. 2-sided t-tests

return p values of 0.022 and 0.031 for the difference in means between the model and

validation sets 1 and 2 respectively. However, the difference is relatively minor and

variance tests show no statistical difference between the populations. Consequently,

38

www.manaraa.com

Figure 10. 95% upper tolerance bound (α = 0.05) across the range of expected update
periods and latencies. Response surface derived from World of Warcraft replays.

the model provides a reasonable prediction for the World of Warcraft data.

Validation of the optimal update period model given by Equation 18 was con-

ducted using a simulated LVC. The server node hosts a single entity employing a ran-

dom acceleration motion model. The client node maintains a replica of the server’s

entity and employs local dead reckoning as a consistency control algorithm. Updates

consist of the current position and velocity of the entity and are sent from the server

to the client at periodic intervals.

Figure 15 plots the predicted optimal update periods as a function of the plausi-

bility limit for entities with a maximum acceleration of 1, 5, and 10 times the force of

gravity. The predicted response curves assume an entity undergoing constant maxi-

39

www.manaraa.com

Figure 11. Contour plot of the upper tolerance surface in Figure 10. Contours are
plotted for plausibility limits from L = 0.1 m to L = 1.1 m in increments of 0.1 m.

mum acceleration and therefore indicate a worst-case scenario. The blue and red lines

indicate update periods of 100 ms and 300 ms respectively. These are the maximum

limits recommended by the DIS standard for tightly-coupled and loosely-coupled sim-

ulations. Cross-referencing these lines with the response curves indicate the maximum

obtainable plausibility limit for an entity undergoing constant maximum acceleration.

In the case of an entity whose maximum acceleration is 10 G (typical of military

aircraft), the maximum plausibility limit for any interaction I is 2 m. Any interaction

that requires a maximum spatial deviation less than 2 m cannot be guaranteed to

provide a correct outcome. This is often manifested as a divergence in interaction

outcomes for each participating entity. For example, a collision detection routine

40

www.manaraa.com

Figure 12. Jump time distribution for the plausible to implausible state transition with
plausibility limit = 0.1, latency = 0.035, and update period = 0.020.

requiring accuracy of 1 m may result in one entity observing a collision while the

other does not.

As noted, the model provides a worst-case prediction of the update period required

to obtain a plausibility limit of L. In real DVEs, entities rarely undergo sustained

maximum accelerations. In fact, entity acceleration is practically zero the vast ma-

jority of the time. If the requirement for meeting the plausibility limit is relaxed in a

statistical fashion, then the required update period can be quite a bit higher than that

predicted by the optimal model. That is, if the spatial error is allowed to exceed the

limit some fraction of the time, then tolerance limits can be computed at a specified

level of confidence. The guarantee provided by Equation 18 then becomes something

41

www.manaraa.com

Figure 13. Jump time distribution for the plausible to implausible state transition with
plausibility limit = 0.1, latency = 0.5, and update period = 0.3.

similar to “with confidence 1−α, the spatial error will be within the plausibility limit

L 95% of the time.” More formally, we have the following optimization problem:

min

√
2 ∗ L
amax

− d− L (28)

Figure 16 plots the deviation between the 95% upper tolerance bound (1 − α =

0.05) for an entity moving according to a normally distributed acceleration profile

(a N(0, 1), amax = 9.8) and a plausibility limit L = 1.0 with an update propagation

delay of 100 ms. The predicted update period according to Equation 18 is 0.3518 s.

On the other hand, relaxing the consistency constraints and solving the minimization

42

www.manaraa.com

Figure 14. Boxplot showing percentage of time spent in the plausible state for model
predictions and validation sets.

problem given in Equation 28 yields an update period of 1.75 s. This larger period

ensures that 95% of the spatial error over the course of the simulation will be less

than or equal to L = 1.0 with 95% confidence.

4.2 Performance Evaluation

Finally, a performance comparison between plausibility-based periodic state up-

dates and dead-reckoning updates using the World of Warcraft entity trace data was

conducted. For this experiment, 100 randomly sampled entity traces were replayed

through a simulator for a range of plausibility limits (L = 0 to L = 5 spatial units).

Update periods were computed according Equation 18 for the plausibility-based up-

43

www.manaraa.com

Figure 15. Update period as a function of plausibility limit with a delay of 100 ms and
maximum acclerations of 1, 5, and 10 G. Blue and red lines indicate 100 ms and 300
ms update periods respectively.

date policy. The dead-reckoning error threshold was set equal to the plausibility

limit. Performance was measured in terms of the percentage of frames within the

plausibility limit. Figure 17 plots the results of the comparison for a nominal latency

of 100 ms. Figure 18 plots the results for a latency of 300 ms. These latencies were

chosen to correspond to worst-case latencies for tightly-coupled and loosely-coupled

simulations (respectively) as specified in the DIS standard. On average, plausibility-

based updates result in deviations less than the plausibility limit approximately 95%

of the time (97.93% for 100 ms latency, 94.46% for 300 ms latency). This is expected

since the update period was selected to provide a 95% upper tolerance bound. Con-

versely, dead-reckoning results in slightly fewer plausible frames, with 96.48% (100

ms latency) and 89.64% (300 ms latency) falling within the plausibility limit.

44

www.manaraa.com

Figure 16. Deviation between the 95% upper tolerance bound (1 − α = 0.05) and
plausibility limit L = 1.0 for an entity with normally distributed acceleration N(0, 1).

45

www.manaraa.com

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Plausibility Limit, L (spatial units)

40

50

60

70

80

90

100

P
er

ce
nt

 P
la

us
ib

le

Percentage of Plausible Frames, D
t
(S

c
,S

s
) L, d=100 ms

Plausibility-based Updates
Dead Reckoning Updates

Figure 17. Performance comparison of plausibility-based periodic and dead-reckoning
update policies across a range of plausibility limits (L = 0 to L = 5) with a nominal
latency of 100 ms. Performance is expressed as a percentage of total frames within the
plausibility limit, i.e., Dt(Sc, Ss) ≤ L.

46

www.manaraa.com

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Plausibility Limit, L (spatial units)

40

50

60

70

80

90

100

P
er

ce
nt

 P
la

us
ib

le

Percentage of Plausible Frames, D
t
(S

c
,S

s
) L, d=300 ms

Plausibility-based Updates
Dead Reckoning Updates

Figure 18. Performance comparison of plausibility-based periodic and dead-reckoning
update policies across a range of plausibility limits (L = 0 to L = 5) with a nominal
latency of 300 ms. Performance is expressed as a percentage of total frames within the
plausibility limit, i.e., Dt(Sc, Ss) ≤ L.

47

www.manaraa.com

V. Conclusion

Assessing data quality is a key challenge for successful application of LVC simu-

lation in T&E environments. A core property of geographically distributed systems

such as LVC simulations is the inability to guarantee consistent state data at all

times and all nodes. The CAP theorem implies that the best consistency guarantee

available to systems that must remain available and tolerant to network partition is

eventual consistency with “read-my-writes” session guarantee. Because of this funda-

mental limitation, it cannot be assumed that all entities in a LVC simulation see and

experience the same sequence of events. Crucially, this can lead to nonsensical and

implausible results – a sure problem for simulations designed to support engineering

test and evaluation. The problem is akin to trying to make accurate measurements

with a device without graduation and of suspect precision.

This work has presented a model of plausibility for LVC simulations. Here, plau-

sibility is defined as an interaction result that all participating entities are willing

to accept and that makes sense given the state of the virtual environment as seen

by each participant. The key observation is that absolute state consistency is not

required for plausible outcomes. Rather, the state need only be close enough for all

parties to agree on the results. This observation gives rise to the notion of an in-

teraction; that is, a state dependence between two entities in the LVC environment

and an associated plausibility limit. So long as the inconsistency associated with the

entities’ state database replicas is bounded by the plausibility limit, the outcome of

the interaction is assumed to be plausible.

Since dead-reckoning is commonly used as a consistency maintenance mechanism

with the intent of reducing divergence between entities and replicas, an error model

was derived combining the residual error from dead-reckoning with the notion of

plausibility limits. This model can be used by LVC simulation designers to choose

48

www.manaraa.com

state update periods based on maximum rates of change for entity state variables and

end-to-end propagation delays with the intent of staying within the plausibility limit

for a particular interaction.

Additionally, a simple stochastic model of plausibility was developed based on

Monte Carlo simulation of a semi-Markov process that can provide statistical esti-

mates of how likely the LVC simulation is to remain within an interaction’s plausi-

bility limit. This allows the simulation engineer to assess fitness for purpose early in

the design process. If the LVC simulation is unlikely to meet precision requirements

(e.g., due to high latency or rapid rates of state change), then some other means of

conducting the experiment can be found before large amounts of time or money are

spent.

Finally, it seems fitting to offer some broad observations on LVC simulation for

T&E based on this work. Firstly, LVC simulation offers on opportunities that may

be unobtainable via traditional T&E venues. For instance, it will be difficult (if not

impossible) to present threat environments to current generation fighter aircraft (e.g.,

the F-35) that are saturated enough to stress the aircraft on a live test range. LVC

simulation can provide any threat density desired, and can provide threats that are

not physically available. This leads to a second benefit of LVC simulation – the ability

to employ assets, entities, and systems that might otherwise be unavailable for live

test – B-2 bombers for instance. And, of course, there are real cost savings to be had

through the use of LVC simulation.

However, some caution is warranted. The challenges associated with assessing

the quality of data collected from an LVC simulation are significant. A momentary

increase in network latency, due perhaps to a flash crowd or viral video, can result in

state errors large enough to skew test results. Post facto correlation of such events

is difficult at best. The potential for confounding factors is high unless dedicated

49

www.manaraa.com

networks with well-known quality of service are available. Even then, a poor choice

of synchronization algorithm or parameter can have similarly damaging effects on

data quality. LVC simulations have much potential to fundamentally change test and

evaluation, but their limitations and confounding factors must be well understood

and explicitly accounted for.

50

www.manaraa.com

Bibliography

1. Abadi, Daniel J. “Consistency tradeoffs in modern distributed database system

design”. Computer-IEEE Computer Magazine, 45(2):37, 2012.

2. Aggarwal, Sudhir, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and

Sampath Rangarajan. “Accuracy in dead-reckoning based distributed multi-

player games”. Proceedings of 3rd ACM SIGCOMM workshop on Network and

system support for games, 161–165. ACM, 2004.

3. Bailis, Peter and Ali Ghodsi. “Eventual consistency today: limitations, exten-

sions, and beyond”. Commun. ACM, 56(5):55–63, May 2013. ISSN 0001-0782.

URL http://doi.acm.org/10.1145/2447976.2447992.

4. Bailis, Peter, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-

stein, and Ion Stoica. “Probabilistically bounded staleness for practical partial

quorums”. Proc. VLDB Endow., 5(8):776–787, April 2012. ISSN 2150-8097. URL

http://dl.acm.org/citation.cfm?id=2212351.2212359.

5. Baker, Jason, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

“Megastore: Providing Scalable, Highly Available Storage for Interactive Ser-

vices.” CIDR, volume 11, 223–234. 2011.

6. Brewer, Eric A. “Towards robust distributed systems”. PODC, volume 7. 2000.

7. Cai, Wentong, Francis Lee, and Lian Chen. “An auto-adaptive dead reckoning

algorithm for distributed interactive simulation”. Proceedings of the thirteenth

workshop on Parallel and distributed simulation, 82–89. IEEE Computer Society,

1999.

51

www.manaraa.com

8. Chen, Kuan-Ta, Polly Huang, and Chin-Laung Lei. “Effect of network quality

on player departure behavior in online games”. Parallel and Distributed Systems,

IEEE Transactions on, 20(5):593–606, 2009.

9. Dahmann, Judith S, Richard M Fujimoto, and Richard M Weatherly. “The

department of defense high level architecture”. Proceedings of the 29th conference

on Winter simulation, 142–149. IEEE Computer Society, 1997.

10. DeCandia, Giuseppe, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. “Dynamo: amazon’s highly available key-value

store”. ACM SIGOPS Operating Systems Review, volume 41, 205–220. ACM,

2007.

11. Delaney, Declan, Tomás Ward, and Séamus McLoone. “On reducing entity state

update packets in distributed interactive simulations using a hybrid model”.

IASTED, 2003.

12. DIS Steering Committee. “IEEE Standard for Distributed Interactive Simulation-

Application Protocols”. IEEE Standard, 1278, 1998.

13. Feinberg, A. “Project Voldemort: Reliable distributed storage”. Proceedings of

the 10th IEEE International Conference on Data Engineering. 2011.

14. Ferguson, Bernard and Neyer Torrico. “Distributed – The Next Step in T&E”.

The ITEA Journal, 35:132–140, 2014.

15. Gilbert, Seth and Nancy Lynch. “Brewer’s conjecture and the feasibility of consis-

tent, available, partition-tolerant web services”. ACM SIGACT News, 33(2):51–

59, 2002.

52

www.manaraa.com

16. Guo, Yong and Alexandru Iosup. “The Game Trace Archive”. Proceedings of the

11th Annual Workshop on Network and Systems Support for Games, NetGames

’12, 4:1–4:6. IEEE Press, Piscataway, NJ, USA, 2012. ISBN 978-1-4673-4578-1.

URL http://dl.acm.org/citation.cfm?id=2501560.2501566.

17. Hahn, Gerald J and William Q Meeker. Statistical intervals: a guide for practi-

tioners. John Wiley & Sons, 1991.

18. Hanawa, Dai and Tatsuhiro Yonekura. “On the error modeling of dead reckoned

data in a distributed virtual environment”. Cyberworlds, 2005. International

Conference on, 8–pp. IEEE, 2005.

19. Hastorun, Deniz, Madan Jampani, Gunavardhan Kakulapati, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. “Dynamo:

Amazons highly available key-value store”. In Proc. SOSP. Citeseer, 2007.

20. Hodson, Douglas D and Rusty O Baldwin. “Characterizing, Measuring, and Val-

idating the Temporal Consistency of Live–Virtual–Constructive Environments”.

Simulation, 85(10):671–682, 2009.

21. Hodson, Douglas D and Rusty O Baldwin. “Performance analysis of live-virtual-

constructive and distributed virtual simulations: defining requirements in terms

of temporal consistency”. 2009.

22. Hodson, Douglas D, Alex J Gutman, Bruce Esken, and Raymond R Hill. “Quan-

tifying Radar Measurement Errors in a Live-Virtual-Constructive Environment

to Determine System Viability: A Case Study”. The Journal of Defense Model-

ing and Simulation: Applications, Methodology, Technology, 1548512913503740,

2013.

53

www.manaraa.com

23. Hodson, Douglas D and Raymond R Hill. “The Art and Science of Live, Virtual

and Constructive Simulation for Test and Analysis”. The Journal of Defense Mod-

eling and Simulation: Applications, Methodology, Technology, 1548512913506620,

2013.

24. Itzel, Laura, Verena Tuttlies, Gregor Schiele, and Christian Becker. “Consis-

tency management for interactive peer-to-peer-based systems”. Proceedings of

the 3rd International ICST Conference on Simulation Tools and Techniques, 1.

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering), 2010.

25. Kopetz, Hermann. Real-time systems: design principles for distributed embedded

applications. Springer, 2011.

26. Kraska, Tim, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. “Con-

sistency Rationing in the Cloud: Pay only when it matters”. Proceedings of the

VLDB Endowment, 2(1):253–264, 2009.

27. Krishnamoorthy, Kalimuthu and Thomas Mathew. Statistical tolerance regions:

theory, applications, and computation, volume 744. John Wiley & Sons, 2009.

28. Lakshman, Avinash and Prashant Malik. “Cassandra: structured storage system

on a p2p network”. Proceedings of the 28th ACM symposium on Principles of

distributed computing, 5–5. ACM, 2009.

29. Lamport, Leslie. “Time, Clocks, and the Ordering of Events in a Distributed

System”. Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782. URL

http://doi.acm.org/10.1145/359545.359563.

30. Li, Yusen and Wentong Cai. “Consistency aware dead reckoning threshold tun-

ing with server assistance in client-server-based dves”. Computer and Informa-

54

www.manaraa.com

tion Technology (CIT), 2010 IEEE 10th International Conference on, 2925–2932.

IEEE, 2010.

31. Li, Yusen and Wentong Cai. “Determining Optimal Update Period for Mini-

mizing Inconsistency in Multi-server Distributed Virtual Environments”. Pro-

ceedings of the 2011 IEEE/ACM 15th International Symposium on Distributed

Simulation and Real Time Applications, DS-RT ’11, 126–133. IEEE Computer

Society, Washington, DC, USA, 2011. ISBN 978-0-7695-4553-0. URL http:

//dx.doi.org/10.1109/DS-RT.2011.10.

32. Li, Z, W Cai, X Tang, and S Zhou. “Loss-aware DR-based update scheduling for

improving consistency in DVEs”. Journal of Simulation, 6(3):164–178, 2012.

33. Li, Zengxiang, Wentong Cai, Xueyan Tang, and Suiping Zhou. “Dead reckoning-

based update scheduling against message loss for improving consistency in DVEs”.

Principles of Advanced and Distributed Simulation (PADS), 2011 IEEE Work-

shop on, 1–9. IEEE, 2011.

34. Li, Zengxiang, Xueyan Tang, Wentong Cai, and Xiaorong Li. “Compensatory

dead-reckoning-based update scheduling for distributed virtual environments”.

SIMULATION, 2013.

35. Lui, John C. S. “Constructing communication subgraphs and deriving an optimal

synchronization interval for distributed virtual environment systems”. Knowledge

and Data Engineering, IEEE Transactions on, 13(5):778–792, 2001.

36. Mauve, Martin. “How to keep a dead man from shooting”. Interactive Distributed

Multimedia Systems and Telecommunication Services, 199–204. Springer, 2000.

55

www.manaraa.com

37. Morse, Katherine L et al. Interest management in large-scale distributed sim-

ulations. Information and Computer Science, University of California, Irvine,

1996.

38. Pace, Dale K. “Comprehensive consideration of uncertainty in simulation use”.

The Journal of Defense Modeling and Simulation: Applications, Methodology,

Technology, 2012. URL http://dms.sagepub.com/content/early/2012/09/

03/1548512912455471.abstract.

39. Parker, Eric Paul, Nadine Elizabeth Miner, Brian Peter Van Leeuwen, and

James Brian Rigdon. “Testing unmanned autonomous system communications

in a Live/Virtual/Constructive environment”. International Test and Evaluation

Association Journal (ITEA), 30:513–522, 2009.

40. Powell, Edward T and J Russell Noseworthy. “The test and training enabling ar-

chitecture (TENA)”. Engineering Principles of Combat Modeling and Distributed

Simulation, 449, 2012.

41. Rahman, Muntasir Raihan, Wojciech Golab, Alvin AuYoung, Kimberly Keeton,

and Jay J Wylie. “Toward a principled framework for benchmarking consis-

tency”. Proceedings of the Eighth USENIX conference on Hot Topics in System

Dependability, 8–8. USENIX Association, 2012.

42. Roberts, Dave, Rob Aspin, Damien Marshall, Seamus Mcloone, Declan Delaney,

and Tomas Ward. “Bounding inconsistency using a novel threshold metric for

dead reckoning update packet generation”. Simulation, 84(5):239–256, 2008.

43. Roberts, Dave, Damien Marshall, S MacLoone, Declan Delaney, Tomas Ward,

and R Aspit. “Exploring the use of local consistency measures as thresholds

for dead reckoning update packet generation”. Distributed Simulation and Real-

56

www.manaraa.com

Time Applications, 2005. DS-RT 2005 Proceedings. Ninth IEEE International

Symposium on, 195–202. IEEE, 2005.

44. Saldana, Jose and Mirko Suznjevic. “QoE and Latency Issues in Networked

Games”. Handbook of Digital Games and Entertainment Technologies, 509, 2017.

45. Singhal, Sandeep Kishan. Effective remote modeling in large-scale distributed

simulation and visualization environments. Ph.D. thesis, Stanford University,

1996.

46. Steed, Anthony and Manuel Fradinho Oliveira. Networked Graphics: Building

Networked Games and Virtual Environments. Elsevier, 2009.

47. Tanenbaum, Andrew and Maarten Van Steen. Distributed systems. Pearson

Prentice Hall, 2007.

48. Tang, Xueyan and Suiping Zhou. “Update scheduling for improving consistency

in distributed virtual environments”. Parallel and Distributed Systems, IEEE

Transactions on, 21(6):765–777, 2010.

49. Terry, Doug. “Replicated data consistency explained through baseball”. Com-

munications of the ACM, 56(12):82–89, 2013.

50. Terry, Douglas B, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M

Theimer, and Brent B Welch. “Session guarantees for weakly consistent replicated

data”. Parallel and Distributed Information Systems, 1994., Proceedings of the

Third International Conference on, 140–149. IEEE, 1994.

51. Van Leeuwen, Brian, Vincent Urias, John Eldridge, Charles Villamarin, and Ron

Olsberg. “Performing cyber security analysis using a live, virtual, and construc-

tive (LVC) testbed”. Military Communications Conference, 2010-MILCOM 2010,

1806–1811. IEEE, 2010.

57

www.manaraa.com

52. Wada, Hiroshi, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. “Data

Consistency Properties and the Trade-offs in Commercial Cloud Storage: the

Consumers’ Perspective.” CIDR, volume 11, 134–143. 2011.

53. Yu, Haifeng and Amin Vahdat. “Design and evaluation of a conit-based continu-

ous consistency model for replicated services”. ACM Transactions on Computer

Systems (TOCS), 20(3):239–282, 2002.

54. Yu, Yang, Zhu Li, Larry Shi, Yi-Chiun Chen, and Hua Xu. “Network-aware state

update for large scale mobile games”. Computer Communications and Networks,

2007. ICCCN 2007. Proceedings of 16th International Conference on, 563–568.

IEEE, 2007.

55. Zhou, Suiping, Wentong Cai, Bu-Sung Lee, and Stephen J Turner. “Time-space

consistency in large-scale distributed virtual environments”. ACM Transactions

on Modeling and Computer Simulation (TOMACS), 14(1):31–47, 2004.

58

www.manaraa.com

Appendix A. Publications

Several portions of this dissertation have been published in peer-reviewed journals

and conferences. Citations and text for these articles are included below for reference

and convenience.

• Multi-Objective Optimization of Dead-Reckoning Error Thresholds for Virtual

Environments. Jeremy R. Millar, Douglas D. Hodson, Gary B. Lamont, and

Gilbert L. Peterson. 2014 International Conference on Collaboration Technolo-

gies and Systems (CTS). May, 2014.

• Data Quality Challenges in Distributed Live-Virtual-Constructive Test Envi-

ronments. Jeremy R. Millar, Douglas D. Hodson, Gilbert L. Peterson, and

Darryl K. Ahner. Journal of Data and Information Quality. April, 2016.

• Consistency and Fairness in Real-Time Distributed Virtual Environments: Paradigms

and Relationships. Journal of Simulation. 2016.

• Deriving LVC State Synchronization Parameters from Interaction Requirements.

Jeremy R. Millar, Doulgas D. Hodson, and Richard Seymour. 20th ACM/IEEE

International Symposium on Distributed Simulation and Real Time Applica-

tions (DS-RT 2016). September, 2016.

• Sources of Unresolvable Uncertainty in Weakly Predictive Distributed Virtual

Environments. Jeremy R. Millar, Jason A. Blake, Douglas D. Hodson, J.O.

Miller, and Raymond R. Hill. Proceedings of the 2016 Winter Simulation Con-

ference. December, 2016.

• Optimizing Update Scheduling Parameters for Distributed Virtual Environ-

ments Supporting Operational Test. Jeremy R. Millar, Douglas D. Hodson,

59

www.manaraa.com

Gilbert L. Peterson, and Darryl K. Ahner. Concurrency and Computation:

Practice and Experience. Accepted, to appear.

60

www.manaraa.com

Multi-Objective Optimization of Dead-Reckoning
Error Thresholds for Virtual Environments

Jeremy R. Millar, Douglas D. Hodson, Gary B. Lamont, Gilbert L. Peterson
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Abstract—Design trade-offs between state consistency and
system response time are commonplace in virtual environments.
Systems typically rely on predictive consistency algorithms such
as dead-reckoning to control consistency and response time.
Dead-reckoning error threshold selection determines the con-
sistency/response time trade-off. We extend this trade-off space
to explicitly account for the concept of system fairness. We
derive a multi-objective optimization problem and apply multi-
objective evolutionary algorithms to solve for Pareto optimal
error thresholds.

Keywords—Virtual simulation environments, dead reckoning,
multi-objective optimization

I. INTRODUCTION

In order to maintain the illusion of a shared environment
users must view the same information at the same time [1]–
[4]. However, waiting for all nodes to acknowledge receipt of
a state update has a negative effect on system responsiveness,
thus breaking the sense of immersion and reducing the quality
of user experience. Indeed, research has shown that network
latencies of 60 ms induce enough response lag to detract from
the play experience in some networked games, while latencies
above 100 ms result in game abandonment [5], [6]. Similarly,
high levels of state inconsistency result in user dissatisfaction
due to nonsensical results, e.g., dead men shooting [7].

Consistency can be made arbitrarily good at the expense
of system responsiveness by executing the system in lockstep
across all participating nodes. Responsiveness, on the other
hand, is limited by system architecture and network topology
[8]. While perfectly responsive systems could in principle
achieve perfect consistency, physical constraints such as the
speed of light ensure even the most responsive virtual en-
vironments will exhibit some inconsistency [9]. Moreover,
as responsiveness improves, the scalability of the system
is limited as the system infrastructure becomes overloaded
with state updates. A primary goal of virtual environment
systems design is to maximize system responsiveness while
simultaneously maximizing consistency.

An additional design objective, particularly for network
games and interactive simulations, is the notion of system
fairness. Fairness measures the disparity between nodes with

respect to consistency and responsiveness [6]. The more sim-
ilar the nodes are with respect to these measures, the more
fair the virtual environment. Fair environments ensure that
all participants experience similar levels of consistency and
response and that no user gains an advantage due to system
architecture.

Many virtual environments use predictive consistency mech-
anisms to improve response time to an input while still
achieving acceptable consistency. Dead-reckoning [3], [4],
[10] is widely used due to its simplicity and performance.
Dead reckoning allows for some amount of inconsistency at
remote nodes to ensure local response times remain within
acceptable perceptual thresholds. This is achieved by allowing
remote nodes to predict the state of the local node between
state updates. The key parameter controlling response time
and consistency is the state update frequency, which is itself
determined by an error threshold. This threshold is the system
designer’s primary means of tuning consistency, responsive-
ness, and fairness.

In this paper, we characterize the choice of error threshold as
a multi-objective optimization problem. Our approach differs
from other work in this area by explicitly including fairness as
an objective. We solve the resulting tri-objective problem (i.e.,
consistency, responsiveness, and fairness) using evolutionary
algorithms and a simulation of the virtual environment. This
approach allows us to choose dead-reckoning error thresholds
that are Pareto optimal for a given system architecture. Finally,
we use a simulation to explore the consistency, responsiveness,
and fairness trade-offs for a simple virtual environment.

The remainder of this paper is structured as follows: Sec-
tions II and III briefly discuss the concepts of dead reckon-
ing and fairness, respectively. Section IV presents a multi-
objective model of the error threshold problem. Section V
outlines a system architecture for solving the multi-objective
error threshold problem. Section VI describes experiments un-
dertaken to validate the architecture and compare performance
of various optimization algorithms. Section VII analyzes the
results of those experiments. Section VIII outlines related work
and Section IX concludes.

www.manaraa.com

Node: 1
High Fidelity: A

Low Fidelity:
A,B,C

Node: 3
High Fidelity: C

Low Fidelity:
A,B,C

Node: 2
High Fidelity: B

Low Fidelity:
A,B,C

Figure 1. A virtual environment consisting of three nodes and three entities.
Each node maintains an authoritative high fidelity model for its local entity
and low fidelity models for all entities in the system.

II. DEAD RECKONING

A virtual environment is a distributed software system
supporting multiple users interacting in real-time that provides
shared senses of space, presence, and time [2]. The IEEE pub-
lished Standard 1278, Distributed Interactive Simulation (DIS)
[10], to provide a common protocol and messaging standard
for communicating between nodes in a virtual environment.
While there are other standards available (e.g., HLA [11] or
TENA [12]), DIS provides a de facto standard for defense
oriented virtual environments (i.e., networked simulators) and
its consistency maintenance mechanisms are widely used in
networked games [4]. Consequently, we restrict our attention
to dead-reckoning algorithms as defined by the DIS standard.

The DIS standard defines a predictive consistency mainte-
nance protocol called dead-reckoning. Under dead-reckoning,
each node maintains a set of low-fidelity models for each
remote entity in the system in addition to the high-fidelity
models for its hosted entities. Figure 1 depicts a virtual
environment consisting of three nodes and three entities. Each
node provides an authoritative, high-fidelity model for one
entity. Additionally, each node maintains a low-fidelity model
of all other entities in the system. Crucially, each node also
maintains a low-fidelity model of its own local entity.

The low-fidelity models allow a node to update entity
positions between state updates using dead-reckoning algo-
rithms. Low-fidelity models typically operate using simplified
dynamics such as first order kinematics. Note that all nodes
execute the same dead-reckoning model. State updates are sent
by a node whenever the divergence (i.e., difference) between
the position of the high-fidelity and low-fidelity models of
its hosted entities exceeds a pre-determined threshold. This
threshold is the key parameter controlling the dead-reckoning
algorithm.

Choosing an appropriate error threshold is a system de-

Inconsistency

R
es

p
o

ns
e

Ti
m

e

+++

Inconsistency

R
es

p
o

ns
e

Ti
m

e +
+

+

A - Fair B - Unfair

Figure 2. Fairness plots for two three node virtual environments. Each
+ symbol represents a node’s location in two-dimensional fairness space.
The nodes in system A are tightly clustered with similar consistency and
responsiveness values. Therefore, system A is fair. Conversely, system B is
unfair since the nodes are widely dispersed in fairness space.

pendent design decision. Generally speaking, lower thresh-
olds yield better consistency. However, improved consistency
comes at the cost of increased network traffic. Depending
on network characteristics such as available bandwidth, it
is possible to overwhelm the network and increase system
response time (that is, the time it takes for all nodes to see an
update). Additionally, as network load increases, consistency
can actually decrease as well [13].

III. FAIRNESS

Consistency and response time are local properties, that is,
they are measured pair-wise. Thus the consistency measured
between nodes 1 and 2 with respect to entity A in Figure 1
might well be different than that measured between nodes 2
and 3. Global properties are also of interest, particularly the
notion of fairness [6], [14]. A system is fair if no user has an
advantage over others due to consistency or response time.

Fairness is measured by projecting each node participating
in a virtual environment into a two-dimensional fairness space
with consistency as one dimension and system response time
as the other. A cluster cohesion measure such as within-class
scatter is computed for all nodes. Low scatter indicates that
the nodes are tightly clustered in fairness space. Thus, each
node has similar consistency levels and response times and no
participant experiences a significant advantage or handicap. On
the other hand, a high scatter value indicates that nodes have
dissimilar consistency values and response times. This affords
some participants advantages in terms of state consistency or
response while handicapping others.

Figure 2 illustrates these ideas for two three-node virtual
environments labeled system A and system B. Note that the
horizontal axis measures inconsistency so that consistency
degrades as one moves away from the origin. The vertical
axis measures system response time, i.e., the time required
for a state update from one node to reach all other nodes.
For both dimensions lower values (closer to the origin) are
more desirable. Each ’+’ symbol indicates an individual node’s
position in fairness space based on average consistency level

www.manaraa.com

and response time.

For system A, the nodes are clustered fairly tightly, indi-
cating a fair system. Each participating node has a similar
consistency level and response time. Thus no participant has a
distinct advantage in terms of better information about the en-
vironment or more rapid environmental response. Conversely,
the nodes in system B are widely dispersed in fairness space.
This indicates an unfair system. One node has a distinct
advantage in terms of data consistency, one has an advantage
in response time, and one is severely handicapped in both
dimensions.

A system can be fair while exhibiting poor performance
with respect to data consistency or response time. Similarly,
a system with generally good performance can be unfair so
long as at least one node has sufficiently different performance
characteristics. Consequently, it is incumbent upon system de-
signers to consider fairness in addition to the more traditional
trade-offs between consistency and responsiveness.

IV. MULTI-OBJECTIVE MODEL

In order to optimize the dead-reckoning error threshold, we
need to define and compute the following quantities:

1) average inconsistency,
2) average response time,
3) and fairness.

A. Computing Inconsistency

The virtual environment community has settled on two
major inconsistency measures:

1) spatial inconsistency (variously termed spatial error, ex-
port error, etc),

2) and time-space inconsistency [15],

Spatial inconsistency is simply the difference between the
local, dead-reckoning estimate of an entity’s position and its
true, high-fidelity position. Time-space inconsistency is the
spatial inconsistency integrated over a time period to account
for the fact that even small errors can be meaningful if they
last long enough. Of the two, spatial inconsistency is the more
common, largely because it is simple to compute. Additionally,
choosing thresholds for time-space inconsistency can be non-
intuitive since the value no longer corresponds to a simple
error. For these reasons, we consider spatial inconsistency as
our measure of interest for this research. However, the opti-
mization techniques employed here are applicable regardless
of the specific inconsistency measure. Indeed, they may well
make time-space inconsistency more attractive by eliminating
manual input of the threshold value.

We compute the average spatial inconsistency as follows:
let Pi(t) be the true position of entity i at time t. Let P j

i (t)
be the position of entity i as represented by node j at time

t according to its dead-reckoning model. Then the average
(pairwise) inconsistency with respect to entity i at node j is
given by

1

T

T∑

t=1

|Pi(t)− P j
i (t)| (1)

Note that this assumes a one-to-one mapping between
enitities and hosts; i.e., node i hosts the high-fidelity model for
entity i (and no others). Averaging Equation 1 over all entities
for a particular node j gives the average spatial inconsistency
experienced by node j, i.e.,

1

N

N∑

i=1,i6=j

1

T

T∑

t=1

|Pi(t)− P j
i (t)| (2)

Computing Equation 2 for all nodes and averaging provides
the average global system inconsistency associated with re-
mote entity positions, i.e.,

1

N2T

N∑

i=1

N∑

i=1,i6=j

T∑

t=1

|Pi(t)− P j
i (t)| (3)

We desire to minimize this inconsistency measure.

B. Computing Response Time

Local response time is associated with the time it takes to
process user inputs. We consider the response time associated
with propagating state updates from a given node to all other
nodes in the system. In order to account for queuing effects in
the implemented software system itself, as well as all network-
induced latencies, this value should be measured in an end-
to-end fashion. That is, the clock begins when the sending
application executes the send operation and not when the
operating system and network hardware actually place the bits
on the wire. Similarly, it ends when the receiving application
(not host or operating system) has received the data.

Response time can be calculated as follows: let tij be the
amount of time required to send an update from node i to
node j. The the response time is given by

max
j
tij , j = 1 . . . N, j 6= i (4)

where N is the total number of nodes in the system. Note
that this value may vary with time since it depends on
environmental factors such as network load. For simplicity,
we assume this value is constant.

Averaging Equation 4 over all nodes provides a measure of
system response time, i.e.,

www.manaraa.com

1

N

N∑

i=1

max
j
tij , j = 1 . . . N, i 6= j (5)

We seek to minimize this response time.

C. Computing Fairness

Equations 2 and 4 provide a means of locating each node in
a two-dimensional fairness space. System fairness is computed
as the cohesion of the resulting data cluster. Let the vector fi
be the location in fairness space of node i. Then the system
fairness is given by

N∑

i=1

(fi − c)2 (6)

where c is the centroid of the N fairness locations fi.
Minimizing this value corresponds to a tighter grouping in
fairness space.

D. Multi-Objective Error Threshold Problem

We are now in a position to define selection of the dead-
reckoning error threshold as a multi-objective optimization
problem. Let x be the spatial error threshold. Let ~f =
(f1f2f3), where f1 is given by Equation 3, f2 is given by
Equation 5, and f3 is given by Equation 6. Then we wish to
find

min
x

~f(x) s.t. BW −BWmax ≤ 0 (7)

where BW is the system bandwidth requirement based on
the number of state update messages sent and BWmax is the
system’s maximum available bandwidth.

V. SYSTEM ARCHITECTURE

In general, there is not a single solution to the multi-
objective optimization problem defined by Equation 7. Instead,
a set of solutions characterizing the trade-offs between individ-
ual objectives is obtained. This notion is formalized through
the concepts of Pareto dominance and Pareto optimality.

Definition 1 (Pareto Dominance): Without loss of general-
ity, assume a multi-objective minimization problem. A solution
x dominates solution y if fi(x) ≤ fi(y) ∀i and ∃j such that
fj(x) < fj(y). Pareto dominance is denoted x � y.

Definition 2 (Pareto Optimality): A solution x is Pareto
optimal if ¬∃ x′ � x; that is, if no other solution dominates
x.

A set of Pareto optimal solutions is called a Pareto optimal
set and its image in objective space is called the Pareto front.
In solving multi-objective optimization problems, we seek to

f1

f2

Non-dominated solutions (Pareto Front)

Dominated solutions

Figure 3. Pareto front, dominated solutions, and non-dominated solutions
for a bi-objective minimization problem.

find or approximate the Pareto optimal set and its associated
trade-offs represented by the Pareto front.

Figure 3 presents these concepts graphically for a bi-
objective minimization problem. Square dots represent non-
dominated solutions on the Pareto front. Round dots represent
dominated solutions. The dotted lines represent dominance
areas – a solution denoted by a square dot dominates any
solution above and to its right. Although not drawn, this
relationship holds for solutions not on the Pareto front as well.

Solutions to multi-objective optimization problems should
lie on or as close as possible to the Pareto Front. Additionally,
solutions should cover a broad section of the Pareto front.
Multi-objective evolutionary algorithms are a preferred means
of solving multi-objective optimization problems because they
can find multiple Pareto optimal solutions in a single run.
Additionally, multi-objective evolutionary algorithms are able
to handle concavity and discontinuity on the Pareto front [16]
making them ideal for exploring the trade-off space.

Implementation of a solver for the error threshold prob-
lem requires two fundamental subsystems: a multi-objective
optimization routine, and a simulation of the virtual envi-
ronment. We built optimization portion of our solver on the
JMetal [17] multi-objective optimization framework. JMetal is
a Java-based framework providing abstractions for problems,
algorithms, and experiments. It includes a large number of
MOEAs as well as standard benchmark problems. Addi-
tionally, JMetal provides an experimental framework capable
of multiple independent runs and basic statistics gathering.
We have extended JMetal with an implementation of the
error threshold problem. This extension evaluates candidate
solutions by invoking a virtual environment simulator, reading
its output, and computing values for each objective function.

A simulation of the distributed virtual environment was
developed using the OMNet++ [18] discrete event simulation

www.manaraa.com

framework. OMNet++ is a discrete event simulation frame-
work for building C++-based network simulation. Simulations
are defined in terms of interacting modules that communicate
via timed messages defining the events in the system. Runtime
libraries are provided to manage the simulation infrastructure
(e.g., the future events list, event scheduling, etc). Extensions
provide a variety of network nodes and protocols to assist
developers.

For each evaluation, our solver generates a network de-
scription file describing the node types, network topology,
and parameters to simulate. With the exception of the dead-
reckoning error threshold to evaluate, the contents of this file
are fixed. The simulator is invoked with the error threshold
under consideration and run for a configurable number of time
steps. It outputs trajectory and message log files for each entity
in the virtual environment.

The trajectory log file for each entity includes its actual
position at each time step. It also includes, for each time step,
the perceived location of all other entities in the system. Taken
as a whole, these data allow us to reconstruct the actual and
perceived locations for all pairs of entities at all times.

The message log file for each entity records the start time
for each message sent as well as the time each incoming
message was received. Taking these data as a whole allows
us to compute maximum response times for each state update.

VI. EXPERIMENTS

Validation of the multi-objective approach to setting error
thresholds requires a particular virtual environment for inves-
tigation. This environment should be deterministic with well
understood decision models and dynamics for each entity.
Additionally, all entities should be synthetic to allow for
statistically significant numbers of trials and long simulations.
Finally, the dynamics of each entity should depend on one or
more other entities and should be complex enough to provide
interesting data.

We leverage Reynolds’ boids model of flocking behavior
[19] to provide a simple system with complex enough dynam-
ics to generate an interesting Pareto front. The model defines
flocking behavior as an emergent system property based on
individual behaviors. Entities called boids move through a
virtual space in three dimensions. The behavior of each boid
is highly coupled to all other boids as each seeks to align
its motion with its neighbors, steer towards the center of its
neighbors, and avoid collisions. These simple behaviors allow
complex flocking to emerge without explicitly designing it into
the system.

Boids are attractive as a system model for a number of
reasons. Firstly, individual boid behaviors are easy to reason
about even though the aggregate flock behavior can be com-
plex. Secondly, boids represent a worst-case scenario in that
each entity’s behavior depends on all other entities at every

TABLE I
ALGORITHM PARAMETERS.

Parameter NSGA-II SPEA2 MCTS
Population size 100 100 100

Archive size 100 100 100
Max evaluations 500 500 500

Crossover probability 0.9 0.9 -
Crossover distribution index 20.0 20.0 -

Mutation probability 1.0 1.0 -
Mutation distribution index 20.0 20.0 -

Exploration coefficient - - 1√
2

time step. Real systems with less coupling should outperform
the boids model. Finally, we can define flock cohesion, or the
average distance between a boid’s flight path and the flock’s
mean flight path, as a simple measure of system performance.

To investigate the shape of the error threshold Pareto front
for the boids, a series of single factor experiments were under-
taken. The goals of these experiments are to: 1) demonstrate
the validity of the multi-objective optimization approach to
determining dead-reckoning error thresholds, 2) ascertain the
shape and location of the Pareto front for a representative
virtual environment, and 3) compare the performance of the
NSGA-II [20], SPEA2 [21], and MCTS [22] multi-objective
optimization algorithms on the error threshold problem.

Two experiments were run using slightly different config-
urations. In the first, a 3 node fully-connected boids network
was established. 30 runs were made for each of the NSGA-II,
SPEA2, and MCTS algorithms. The simulation ran for 60,000
steps for each candidate solution. All network parameters (e.g.,
propagation delay, jitter, etc) were fixed and homogeneous.
This leads to a constant response time based solely on the
network’s propagation delay. Therefore, a simple count of
messages sent was substituted for Equation 5 with a goal of
minimizing total traffic. This is a reasonable thing to do since
it models aggregate traffic levels and is associated with system
scalability.

The second experiment used a 5 node fully-connected boids
network with time-varying network characteristics. Each link
was given a constant propagation delay of 500 ms and a
fixed bandwidth of 1.5 Mbps. For each transmission, jitter
was sampled from a truncated normal distribution with mean
of 100 ms and variance of 60 ms. Link saturation was modeled
with a simple queuing mechanism – messages are held until
the link becomes available. Retransmits and dropped packets
were not modeled. Response time was measured as the second
objective. 10 runs were made for each algorithm with 60,000
steps per simulation invocation.

Table I lists the parameters used for each algorithm. Note
that crossover, mutation, and selection operators refer to built-
in operators provided by JMetal. The exploration coefficient
for MCTS sets a trade-off between exploration of new tree
branches and exploitation of known good branches. For multi-
objective problems, there should be a coefficient for each

www.manaraa.com

Figure 4. Scatter plot showing the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS for Experiment 1.

TABLE II
WILCOXON RANK-SUM TEST RESULTS FOR EXPERIMENT 1.

SPEA 2 MCTS
NSGAII N N
SPEA2 N

objective. Since little was known a priori about the structure
of the search space, all objectives use the same coefficient
value.

VII. RESULTS AND ANALYSIS

Figure 4 plots the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS in objective space for Exper-
iment 1. All three algorithms achieve good convergence and
diversity and show a distinct Pareto front. As expected, the best
values cluster near the origin. There are well-defined trade-offs
between inconsistency and message traffic and inconsistency
and fairness. Low volumes of messaging result in high incon-
sistency and poor fairness.

Algorithm performance was compared using the hyper-
volume quality indicator [16]. The hypervolume indicator
measures how much of the objective space is dominated
by the solutions in a given set. Consequently, it provides a
good indicator of both convergence to the Pareto front and
diversity. The hypervolume was calculated for each algorithm
run (N = 30). Algorithms were compared using the Wilcoxon
rank-sum test against the null hypotheses that the median
samples were drawn from the same distribution. The Wilcoxon
results indicate NSGA-II outperforms both SPEA2 and MCTS.
Additionally, one-way ANOVA indicates statistically signifi-
cant differences in the sample medians (p = 0.0, α = 0.05).

Figure 5a plots the approximate Pareto fronts returned by
NSGA-II, SPEA2, and MCTS in objective space for Experi-
ment 2. Figures 5b to 5d plot the planar projections of the data
in Figure 5a. All three algorithms achieve good convergence
and diversity and show a distinct Pareto front.

TABLE III
MANN-WHITNEY RANK-SUM TEST RESULTS FOR EXPERIMENT 2.

SPEA2 MCTS
NSGA-II - N
SPEA2 -

Algorithm performance was again compared with respect
to the hypervolume indicator. Due to the small sample size
(N = 10), the Mann-Whitney rank-sum test was used instead
of the Wilcoxon rank-sum test. Results are tabulated in Table
III. No statistical difference was found between NSGA-II and
SPEA2 or between SPEA2 and MCTS. However, NSGA-II
was found to outperform MCTS (p = 0.0493, α = 0.05).

Both experiments show well-defined Pareto fronts indicating
trade-offs between inconsistency, response time, and fairness.
Additionally, there are definite lower limits to performance in
any of these dimensions.

For example, Experiment 2 clearly shows that there is a
minimum achievable inconsistency and that as inconsistency
approaches this value, the response time increases dramati-
cally. This drives an attendant degradation in fairness. This
result is important since it implies that there are diminishing
returns as one approaches the theoretical minimum for incon-
sistency (see Figures 5b and 5c).

Fortunately, there is a wide area of acceptable performance
with low inconsistency, low response time, and reasonable
fairness. However, there is wide variability in fairness in this
region driven primarily by changing message latency due to
jitter and congestion. It should be noted; however, that while
response times remain low in this region, the amount of state
updates sent becomes rather large as borne out by Experiment
1. The systems under test in this work are small; real-world
systems include many more entities and nodes. Thus, while
response time may not become a design constraint, overall
message volume may well limit scalability. Additionally, while
not modeled here, one should also expect response time to
increase as message volume increases due to network routing.

A second observation is that the achieved spatial inconsis-
tencies are quite small. The lower bound is approximately 0.25
spatial units. The boids simulation under study uses a virtual
world 20 units wide in each dimension, giving an achievable
spatial error of about 1%. Whether this is an acceptable level of
error depends on the purpose of the simulation. For the boids,
velocities are small and 1% error is quite good as the boids
maintained their flocking behavior. However, for an aircraft
simulation with large velocities (e.g., supersonic), 1% error can
translate to a large distance. This too is a valuable result for
virtual environment designers – the best achievable objective
values may well be too large for the intended application.

Additionally, use of a non-optimal threshold has distinct
negative effects on system performance, i.e., flock cohesion.
A three boid system with no network delay and perfect

www.manaraa.com

(a) Approximate Pareto fronts achieved by NSGA-II,
SPEA2, and MCTS for Experiment 2.

(b) Projection on the inconsistency-response time plane.

(c) Projection front on the inconsistency-fairness plane. (d) Projection front on the response time-fairness plane.

Figure 5. Approximate Pareto fronts achieved by NSGA-II, SPEA2, and MCTS for Experiment 2.

information (each entity has the exact position of all others at
all times and dead reckoning is not necessary) achieves a flock
cohesion measure of 7.667. Adding a modest network delay
of 100 ms and an optimal dead reckoning threshold achieves
a cohesion measure of 8.573. However, even a slightly non-
optimal threshold of 2% spatial error results in increased
inconsistency and a flock cohesion measure of 17.45.

Furthermore, conducting a study such as this during the
system design phase can bring some insight into fitness of pur-
pose. For instance, in the military domain one might wish to
perform an operational test of some weapons system capability
using existing simulation resources. If those resources are
unable to achieve requisite consistency or response times based
on an analysis such as this, the use of simulators should be
abandoned. Similar results hold for other domains. In general,
this approach can provide the designer some assurance that
meeting performance requirements for consistency, response
time, and fairness are achievable goals.

Finally, NSGA-II outperformed both SPEA2 and MCTS on
the error threshold problem. This was unexpected since SPEA2
and most modern methods tend to outperform NSGA-II by a
wide margin on standard test suites. However, the result is not
unwelcome since NSGA-II executes faster than both SPEA2

and MCTS.

Some caution in applying these results is in order. It should
be noted that the simulation used was a relatively low fidelity
network simulation. Bit and packet errors were not modeled.
Neither were routing effects, retransmits, or dropped packets.

VIII. RELATED WORK

A common objective in virtual environment research and
design is the maintenance of adequate consistency levels in
the face of limited system resources such as throughput or
network latency [23]. Several authors ([2]–[4], [23], [24])
have highlighted the trade-off between system consistency and
system responsiveness as a defining characteristic of virtual
environments.

Several papers have been published optimizing various as-
pects of consistency management and state update scheduling
in particular [25]–[29]. Li and Cai [30] formulate the prob-
lem of minimizing inconsistency subject to network capacity
constraints as a convex optimization problem. Tang and Zhou
[31] derive optimal update schedules based on minimizing
time-space inconsistency [15]. However, these analyses do not
account for fairness as an explicit objective.

www.manaraa.com

Chen and Zarki [14] define a relationship between system
consistency, network delay, and quality of experience, includ-
ing fairness, but do not provide methods for finding the optimal
trade-off point.

IX. CONCLUSION

Choosing dead-reckoning error thresholds for distributed
virtual environments is a non-trivial undertaking. The thresh-
old choice impacts system performance in a number of di-
mensions including consistency, response time, and fairness.
We have presented a multi-objective optimization model that
accounts for the relationships between these three quantities.
Additionally, we have built an architecture for the associated
optimization problem based on multi-objective evolutionary
algorithms and simulation of a simple virtual environment.

Experiments with simple virtual environment models indi-
cate use of multi-objective optimization techniques is a viable
means of choosing dead-reckoning thresholds. Analysis of
the resulting Pareto fronts show diminishing returns as one
approaches the theoretical minimum for state inconsistency.
Additionally, our results highlight the trade-offs between con-
sistency, response time, and fairness. Application of our model
and solver with appropriate entity dynamics can assist virtual
environment designers in tuning their applications for best
possible performance.

REFERENCES

[1] S. K. Singhal, “Effective remote modeling in large-scale distributed
simulation and visualization environments,” Ph.D. dissertation, Stanford
University, 1996.

[2] S. Singhal and M. Zyda, Networked virtual environments: design and
implementation. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1999.

[3] J. Smed and H. Hakonen, Algorithms and Networking for Computer
Games. Wiley. com, 2006.

[4] A. Steed and M. F. Oliveira, Networked Graphics: Building Networked
Games and Virtual Environments. Elsevier, 2009.

[5] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. De-
grande, “Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proceedings of 3rd ACM SIGCOMM workshop on Network and system
support for games. ACM, 2004, pp. 152–156.

[6] J. Brun, F. Safaei, and P. Boustead, “Fairness and playability in online
multiplayer games,” Faculty of Informatics-Papers, p. 232, 2006.

[7] M. Mauve, “How to keep a dead man from shooting,” in Interactive Dis-
tributed Multimedia Systems and Telecommunication Services. Springer,
2000, pp. 199–204.

[8] D. D. Hodson and R. O. Baldwin, “Performance analysis of live-virtual-
constructive and distributed virtual simulations: defining requirements in
terms of temporal consistency,” 2009.

[9] Y. Zhang, L. Chen, and G. Chen, “Globally synchronized dead-reckoning
with local lag for continuous distributed multiplayer games,” in Proceed-
ings of 5th ACM SIGCOMM workshop on Network and system support
for games. ACM, 2006, p. 7.

[10] DIS Steering Committee, “IEEE standard for distributed interactive
simulation-application protocols,” IEEE Standard, vol. 1278, 1998.

[11] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “The department
of defense high level architecture,” in Proceedings of the 29th conference
on Winter simulation. IEEE Computer Society, 1997, pp. 142–149.

[12] J. R. Noseworthy, “The test and training enabling architecture (TENA)
supporting the decentralized development of distributed applications
and lvc simulations,” in Distributed Simulation and Real-Time Appli-
cations, 2008. DS-RT 2008. 12th IEEE/ACM International Symposium
on. IEEE, 2008, pp. 259–268.

[13] D. Marshall, S. McLoone, T. Ward, and D. Delaney, “Does reducing
packet transmission rates help to improve consistency within distributed
interactive applications?” 2006.

[14] P. Chen and M. El Zarki, “Perceptual view inconsistency: an objective
evaluation framework for online game quality of experience (qoe),” in
Proceedings of the 10th Annual Workshop on Network and Systems
Support for Games. IEEE Press, 2011, p. 2.

[15] S. Zhou, W. Cai, B.-S. Lee, and S. J. Turner, “Time-space consistency
in large-scale distributed virtual environments,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 14, no. 1, pp. 31–
47, 2004.

[16] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuisen, Evolutionary
algorithms for solving multi-objective problems. Springer, 2007.

[17] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for
multi-objective optimization,” Advances in Engineering Software,
vol. 42, no. 10, pp. 760–771, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965997811001219

[18] A. Varga, “Omnet++,” in Modeling and Tools for Network Simulation.
Springer, 2010, pp. 35–59.

[19] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM SIGGRAPH Computer Graphics, vol. 21, no. 4. ACM,
1987, pp. 25–34.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[21] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele,
and L. Thiele, “Spea2: Improving the strength pareto evolutionary
algorithm,” 2001.

[22] W. Wang, M. Sebag et al., “Multi-objective monte-carlo tree search,” in
Asian conference on machine learning, 2012.

[23] D. Delaney, T. Ward, and S. McLoone, “On consistency and network
latency in distributed interactive applications: A surveypart i,” Presence:
Teleoperators and Virtual Environments, vol. 15, no. 2, pp. 218–234,
2006.

[24] ——, “On consistency and network latency in distributed interactive
applications: A survey-part ii,” Presence: Teleoperators and Virtual
Environments, vol. 15, no. 4, pp. 465–482, 2006.

[25] K.-H. Shim and J.-S. Kim, “A dead reckoning algorithm with variable
threshold scheme in networked virtual environment,” in Systems, Man,
and Cybernetics, 2001 IEEE International Conference on, vol. 2. IEEE,
2001, pp. 1113–1118.

[26] Y. Li and W. Cai, “Consistency aware dead reckoning threshold tuning
with server assistance in client-server-based dves,” in Computer and
Information Technology (CIT), 2010 IEEE 10th International Conference
on. IEEE, 2010, pp. 2925–2932.

[27] Z. Li, W. Cai, X. Tang, and S. Zhou, “Dead reckoning-based update
scheduling against message loss for improving consistency in dves,” in
Principles of Advanced and Distributed Simulation (PADS), 2011 IEEE
Workshop on. IEEE, 2011, pp. 1–9.

[28] Z. Li, X. Tang, W. Cai, and X. Li, “Compensatory dead-reckoning-based
update scheduling for distributed virtual environments,” SIMULATION,
2013.

[29] W. Cai, F. Lee, and L. Chen, “An auto-adaptive dead reckoning algorithm
for distributed interactive simulation,” in Proceedings of the thirteenth
workshop on Parallel and distributed simulation. IEEE Computer
Society, 1999, pp. 82–89.

[30] Y. Li and W. Cai, “Determining optimal update period for minimizing
inconsistency in multi-server distributed virtual environments,” in
Proceedings of the 2011 IEEE/ACM 15th International Symposium on
Distributed Simulation and Real Time Applications, ser. DS-RT ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 126–133.
[Online]. Available: http://dx.doi.org/10.1109/DS-RT.2011.10

[31] X. Tang and S. Zhou, “Update scheduling for improving consistency
in distributed virtual environments,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 21, no. 6, pp. 765–777, 2010.

www.manaraa.com

XXXX

Data Quality Challenges in Distributed Live-Virtual-Constructive Test
Environments

JEREMY R. MILLAR, DOUGLAS D. HODSON, GILBERT L. PETERSON and DARRYL K.
AHNER, Air Force Institute of Technology

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Distributed simulation, performance estimation

ACM Reference Format:
Jeremy R. Millar, Douglas D. Hodson Gilbert L. Peterson, and Darryl K. Ahner. 2015. Data Quality Chal-
lenges in Distributed LVC Test Environments ACM J. Data Inform. Quality V, N, Article XXXX (XXXX 2015),
3 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Live-virtual-constructive (LVC) simulations are complex systems comprising a com-
bination of live (real people operating real equipment), virtual (real people operat-
ing simulated equipment, or vice versa), and constructive (wholly simulated) entities.
Nodes in the system support the simulation of one or more entities and are often ge-
ographically distributed to leverage unique assets, e.g., physical test range space or
high-fidelity full motion simulators. Nodes are connected in a peer-to-peer fashion and
communicate using protocols such as Distributed Interactive Simulation (DIS) [DIS
Steering Committee 1998], the High Level Architecture (HLA) [Dahmann et al. 1997],
or the Test and Training Enabling Network Architecture (TENA) [Powell and Nose-
worthy 2012].

Distributed LVC simulation promises a number of benefits for the test and evalua-
tion (T&E) community, including reduced costs, access to simulations of limited avail-
ability assets, the ability to conduct large-scale multi-service test events, and recapital-
ization of existing simulation investments. Consequently, the Department of Defense
(DoD) is increasingly turning to LVC simulation and virtual environments to support
T&E events. LVC simulations have been used to test communications for unmanned
aircraft systems [Parker et al. 2009], conduct cyber security analysis [Van Leeuwen
et al. 2010], and quantify radar measurement errors [Hodson et al. 2013].

Ensuring rigorous results for T&E events supported by LVC simulation requires ad-
dressing three fundamental data quality challenges: quantifying numerical errors due
to weakly consistent nodes; assessing measurement accuracy with respect to tolerance
requirements; and assessing measurment quality in the absence of absolute truth val-
ues.

Author’s addresses: J. R. Millar, D. D. Hodson, and G. L. Peterson, Department of Electrical and Computer
Engineering, Air Force Institute of Technology; D. K. Ahner, Department of Operations Research, Air Force
Institute of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 1936-1955/2015/XXXX-ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Journal of Data and Information Quality, Vol. V, No. N, Article XXXX, Publication date: XXXX 2015.

www.manaraa.com

XXXX:2 J. Millar et al.

2. DATA QUALITY CHALLENGES
LVC simulations are typically designed as fully replicated, geographically distributed
database applications with real-time constraints. The data of interest is composed of
entity and world state information and derived quantities such as collisions or weapons
effectiveness. This data must be replicated at each node to meet availability and re-
sponsiveness requirements. The inclusion of live or virtual entities imposes real-time
constraints on database responsiveness since long read/write latencies cannot be tol-
erated. Consequently, entity state updates (i.e., writes to a database record) are propa-
gated to other system nodes after taking effect locally and are delayed due to network
latency. Thus, not all nodes see the same simulation state at the same time. If updates
cease, the system will eventually become consistent [Terry et al. 1994]. As such, LVC
simulations can be viewed in the same context as eventually consistent distributed
datastores such as Amazon’s Dynamo [DeCandia et al. 2007], Cassandra [Lakshman
and Malik 2009], or Megastore [Baker et al. 2011].

For any eventually consistent distributed database, a fundamental question is “How
eventual is eventual?” Common measures of eventual consistency are time (how long
does it take for readers to see the result of a write) and versions (how many versions
old is a given read result) [Bailis and Ghodsi 2013]. For LVC simulations and other
distributed virtual environments, deviation (e.g., Euclidean distance) from a “true”
value is a common measure of consistency [Yu and Vahdat 2002; Aggarwal et al. 2004;
Zhou et al. 2004].

Quantifying the numerical error associated with eventual consistency is a key chal-
lenge for LVC simulations. While there is a growing body of literature characteriz-
ing the consistency of distributed databases such as Dynamo and Cassandra [Wada
et al. 2011; Rahman et al. 2012; Bailis et al. 2012], these works focus on time or ver-
sion staleness as the measure of consistency, feature read-heavy workloads, and are
not necessarily geographically distributed. In contrast, LVC simulations are more con-
cerned with numerical error, have a balanced read/write workload, and are distributed
geographically.

During a test event, measurements may be taken at any simulation node. Inconsis-
tencies in the replicated state are reflected as measurement errors. A second challenge
lies in assessing whether each measurement error lies within a precision tolerance.
This assessment must be conducted during system design to ensure the simulation is
capable of meeting test requirements. Additionally, it must occur during the test execu-
tion to provide a quantification of the uncertainty associated with each measurement.

A third challenge for LVC simulations is assessing the quality of measurements
without a known truth value, particularly in the discrete case [Mauve 2000]. This is
especially true for derived quantities that depend on inconsistent state data such as
collisions and weapons effects. In this case, each interacting node may compute a result
that is correct according to its state replica and different from other interacting nodes.
Furthermore, the uncertainty can vary based on the node taking the measurement.

3. CONCLUSION
LVC simulations enable large-scale operationally relevant T&E events at reduced cost,
provide access to limited availability assets, and recapitalize existing simulations. Sys-
tem architectures based on weakly consistent replicated databases and unreliable up-
date protocols yield three fundamental challenges for data quality: quantifying error
due to eventual consistency; assessing measurment accuracy with respect to desired
tolerances; and assessing measurement quality in the absence of a truth value. Ad-
dressing these challenges is fundamental to ensuring the veracity and rigor of T&E
events supported by LVC simulation.

ACM Journal of Data and Information Quality, Vol. V, No. N, Article XXXX, Publication date: XXXX 2015.

www.manaraa.com

Data Quality Challenges in Distributed Live-Virtual-Constructive Test Environments XXXX:3

REFERENCES
Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and Sampath Rangarajan. 2004.

Accuracy in dead-reckoning based distributed multi-player games. In Proceedings of 3rd ACM SIG-
COMM workshop on Network and system support for games. ACM, 161–165.

Peter Bailis and Ali Ghodsi. 2013. Eventual consistency today: limitations, extensions, and beyond. Com-
mun. ACM 56, 5 (May 2013), 55–63. DOI:http://dx.doi.org/10.1145/2447976.2447992

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion Stoica. 2012.
Probabilistically bounded staleness for practical partial quorums. Proc. VLDB Endow. 5, 8 (April 2012),
776–787. http://dl.acm.org/citation.cfm?id=2212351.2212359

Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing Scalable, Highly Avail-
able Storage for Interactive Services.. In CIDR, Vol. 11. 223–234.

Judith S Dahmann, Richard M Fujimoto, and Richard M Weatherly. 1997. The department of defense high
level architecture. In Proceedings of the 29th conference on Winter simulation. IEEE Computer Society,
142–149.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 205–220.

DIS Steering Committee. 1998. IEEE Standard for Distributed Interactive Simulation-Application Proto-
cols. IEEE Standard 1278 (1998).

Douglas D Hodson, Alex J Gutman, Bruce Esken, and Raymond R Hill. 2013. Quantifying Radar Mea-
surement Errors in a Live-Virtual-Constructive Environment to Determine System Viability: A Case
Study. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology (2013),
1548512913503740.

Avinash Lakshman and Prashant Malik. 2009. Cassandra: structured storage system on a p2p network. In
Proceedings of the 28th ACM symposium on Principles of distributed computing. ACM, 5–5.

Martin Mauve. 2000. How to keep a dead man from shooting. In Interactive Distributed Multimedia Systems
and Telecommunication Services. Springer, 199–204.

Eric Paul Parker, Nadine Elizabeth Miner, Brian Peter Van Leeuwen, and James Brian Rigdon. 2009. Test-
ing unmanned autonomous system communications in a Live/Virtual/Constructive environment. Inter-
national Test and Evaluation Association Journal (ITEA) 30 (2009), 513–522.

Edward T Powell and J Russell Noseworthy. 2012. The test and training enabling architecture (TENA).
Engineering Principles of Combat Modeling and Distributed Simulation (2012), 449.

Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton, and Jay J Wylie. 2012. Toward
a principled framework for benchmarking consistency. In Proceedings of the Eighth USENIX conference
on Hot Topics in System Dependability. USENIX Association, 8–8.

Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M Theimer, and Brent B Welch.
1994. Session guarantees for weakly consistent replicated data. In Parallel and Distributed Information
Systems, 1994., Proceedings of the Third International Conference on. IEEE, 140–149.

Brian Van Leeuwen, Vincent Urias, John Eldridge, Charles Villamarin, and Ron Olsberg. 2010. Performing
cyber security analysis using a live, virtual, and constructive (LVC) testbed. In Military Communica-
tions Conference, 2010-MILCOM 2010. IEEE, 1806–1811.

Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. 2011. Data Consistency Properties and
the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective.. In CIDR, Vol. 11. 134–143.

Haifeng Yu and Amin Vahdat. 2002. Design and evaluation of a conit-based continuous consistency model
for replicated services. ACM Transactions on Computer Systems (TOCS) 20, 3 (2002), 239–282.

Suiping Zhou, Wentong Cai, Bu-Sung Lee, and Stephen J Turner. 2004. Time-space consistency in large-
scale distributed virtual environments. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 14, 1 (2004), 31–47.

Received ; revised ; accepted

ACM Journal of Data and Information Quality, Vol. V, No. N, Article XXXX, Publication date: XXXX 2015.

www.manaraa.com

Consistency and Fairness in Real-Time Distributed
Virtual Environments: Paradigms and Relationships

Jeremy R. Millar∗, Douglas D. Hodson†, Gilbert L. Peterson‡, and Darryl K. Ahner§
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

Email: {jeremy.millar, douglas.hodson, gilbert.peterson, darryl.ahner}@afit.edu
Telephone: ∗937-255-3636 x4228 †x4719, ‡x4281, §x4708

Abstract—Distributed real-time virtual environments entail a
well-known set of trade-offs resulting in a lack of state consistency
across simulation nodes. This lack of consistency gives rise
to a number of challenges that must be addressed by system
designers to ensure users remain engaged and satisfied. This
paper surveys several approaches to defining, measuring, and
controlling the consistency of simulation state data and relates
them to the concepts of fairness and fitness for purpose. The
interplay between consistency and fairness, in relation to fitness
for purpose must be carefully considered by system engineers to
ensure appropriate design trade-offs.

Index Terms—distributed virtual environments; simulation;
consistency; fairness

I. INTRODUCTION

Distributed virtual environments (DVEs) are real-time, man-
in-the-loop, geographically distributed simulations sharing
data in the same manner as a distributed database (Millar et al.,
2015). They are found in a variety of application domains
such as entertainment and gaming; collaboration systems; tele-
robotics; training; and engineering test and analysis. DVEs
require high levels of data consistency to support a shared
sense of time, space, and interaction among users. Addition-
ally, there are real-time constraints placed on the system’s
responsiveness to user inputs. Real-time responsiveness and
data consistency are often contradictory requirements that
define a trade space, particularly on public networks where
users may be globally distributed and latencies can be quite
high. Adequately understanding and addressing this tradeoff
is necessary to keep users engaged and requires a thorough
understanding of the interplay between real-time distributed
database design, the effects of latency on user behavior, and the
need for DVEs to present temporally and spatially consistent
views to all users.

This article reviews the distributed virtual environment
literature with respect to three key areas: 1) defining and
measuring data consistency errors between database replicas,
2) update polices for maintaining state data consistency, and 3)
methods for measuring and achieving fair playing fields where
no user has a systemic advantage due to geographic or network
location. Additionally, we describe the relationship between
approaches used to characterize state space consistency and
responsiveness issues. Finally, we provide some thoughts on
the utility of DVEs with respect to engineering test and
analysis applications.

The remainder of this paper is organized as follows: Section
II outlines the system model and assumptions used throughout
the paper. Section III defines several error models in common
use by the DVE community. Section IV surveys common
state update polices. Section V presents models of fairness
in virtual environments. Finally, Section VI provides some
commentary with regard to system design considerations and
future research directions.

II. SYSTEM MODEL

DVEs are often designed as a collection of loosely coupled,
geographically distributed nodes communicating in a peer-to-
peer networked architecture with the goal of presenting users
with a shared sense of time and space (Singhal and Zyda,
1999). Nodes are loosely coupled in the sense that each makes
no assumptions about the capabilities of other nodes beyond
the ability to communicate using a common protocol. Nodes
may be geographically distributed in order to take advantage
of unique, one-of-a-kind assets or to bring together assets
that are themselves geographically distributed. The use of a
peer-to-peer communication model allows nodes to operate
independently. DVEs of particular interest comply with one of
several architectural standards such as Distributed Interactive
Simulation (DIS) (DIS Steering Committee, 1998), the High
Level Architecture (HLA) (Kuhl et al., 1999), or the Test and
Training Enabling Architecture (TENA) (Noseworthy, 2008;
Powell and Noseworthy, 2012).

Each node in a DVE may host one or more entities repre-
senting objects such as tanks or aircraft. Entities may represent
real-world objects such as an aircraft on a training range
(live entities), man-in-the-loop simulators (virtual entities),
or wholly simulated assets (constructive entities). Nodes are
responsible for processing user inputs, physics models, and
state maintenance for their hosted entities. Additionally, nodes
send entity state updates to other nodes so that each can
maintain a representation of the overall simulation state. In
the context of a single entity, the hosting node is termed the
server while all other nodes are clients or replicas. Note that
each node in the system acts as both server and client – a
node is the server for each entity it simulates and a client
for all others. This is sometimes referred to as a “serverless”
architecture.

Simulation state can be divided into two types: 1) static,
and 2) dynamic. Static state data includes items used by the

www.manaraa.com

Fig. 1. Entities, implementation, and dynamic shared state (Hodson and Hill, 2013).

simulation that do not change, such as terrain. Dynamic state
data consists of information about the entities or environment
that can change over time such as entity position and orienta-
tion or weather. Dynamic state may be discrete or continuous.
The sharing of dynamic state between nodes allows users to
interact with one another as if they inhabit the same virtual
environment.

This sharing and storage of dynamic shared state can be
viewed as nodes maintaining a fully replicated, eventually con-
sistent distributed database. Each record in this database holds
the state data for a single entity. Nodes host replicas of the
state database. Nodes write only to the records corresponding
to the entities they host; all other records are read-only. For
a given entity, the server node updates the replicas according
to some policy – common policies include sending updates
periodically or when a predicted error crosses some threshold
value. The policy need not be the same for all replicas or data
types. The state database is eventually consistent in the sense
that once all user inputs cease, all replicas will converge to
the same state (i.e., same values). In the meantime, reads from
different replicas may return different values and in fact may
return any value written since the beginning of the simulation
(Terry, 2013).

Eventually consistent databases are employed by DVEs
because supporting live and virtual entities imposes real-time
processing constraints. Response times to user inputs for man-
in-the-loop simulations should be less than 100 ms in order
to avoid user-induced oscillation effects (Morse et al., 1996).
These requirements, coupled with minimum data propagation
delays, imply that absolute consistency in distributed real-time
simulation is unachievable. Only after all inputs have ceased
and some time has passed can each replica be guaranteed
to have correct state data. Consequently, client-side state
prediction algorithms are widely deployed to mitigate state

errors between receiving updates from the server.
Figure 1 illustrates the basic structure of a distributed virtual

environment. At the top of the figure are two entities, in this
case two aircraft. These entities interact with one another in
the virtual environment; for example, the fighter may try to
intercept the bomber. The entities and their interactions are
simulated by a pair of nodes communicating across a network
as illustrated in the middle portion of Figure 1. Note that
each simulation node acts as a server for its own entity and
client for the other entity. Finally, the bottom portion of the
figure depicts the dynamic shared state of the simulation,
e.g., positional information. The state database consists of a
position record for each entity. Records may be inconsistent,
depending on network latency and other factors, as illustrated
by the arrows labeled “Truth” and “Perceived” state.

III. TYPES OF ERROR IN DISTRIBUTED VIRTUAL
ENVIRONMENTS

Several types of error arise in DVEs as a consequence of the
loose consistency guarantees provided by the state database.
Let es(t) and ec(t) be the state of some entity as stored in the
server and client database replicas at time t. For any entity
state for which there is an appropriate norm (e.g., position),
we can define the spatial error at time t, SE(t), as the distance
between the server and client representations of the entity state.
That is,

SE(t) = ‖es(t)− ec(t)‖ (1)

Aggarwal et. al. (Aggarwal et al., 2004) assumes a state
update policy based on server-side dead reckoning and decom-
poses the spatial error into two components: dead reckoning
error and export error. Once again, let es(t) and ec(t) be the
state of entity e as represented in the server and client state
databases. Further, assume the server also maintains a dead

www.manaraa.com

reckoned version of e as a means of predicting the spatial
error at the client. Let ês(t) represent this approximation (or
estimate). Then the dead reckoning error DE(t) is given by

DE(t) = ‖es(t)− ês(t)‖ (2)

If at any time t the dead reckoning error exceeds some
threshold, h, an update is sent to the client and ês(t) is
reset to the true entity state es(t). Due to propagation delay
factors such as network latency and processing time at the
client, the entity state at the client will differ from the dead
reckoned approximation at the server, i.e., ês(t) and ec(t) are
not necessarily equal – ês(t) is an estimate of ec(t). This
difference is termed the export error, EE(t), and is given by

EE(t) = ‖ês(t)− ec(t)‖ (3)

The total spatial error is thus the sum of the dead reckoning
error at the server and the export error at the client, i.e.,

SE(t) = ‖es(t)− ec(t)‖ = DE(t) + EE(t) (4)

Integrating spatial error with respect to time yields a consis-
tency measure known as time-space inconsistency (TSI) (Zhou
et al., 2004), i.e.,

TSI(t0, t1) =

∫ t1

t0

SE(t) dt (5)

and draws an equivalence between large spatial errors of short
duration and small errors of long duration.

TSI has been used as the basis of a number of state update
scheduling algorithms and policies (Tang and Zhou, 2010; Li
and Cai, 2010; Li et al., 2011; Li and Cai, 2011; Li et al.,
2012, 2013). Most of these policies employ some form of
server-side dead reckoning; consequently, the TSI can still be
decomposed into dead reckoning and export errors.

There are some drawbacks to the use of TSI as an error
measure. First, for certain classes of entity motion, TSI can
grow without bound (Roberts et al., 2008). Second, choosing
a dead reckoning threshold can be somewhat counter-intuitive.
Finally, and of most importance to DVEs in a test and analysis
context, the conflation of short duration, large distance errors
with long duration, short distance errors can make it difficult
to determine if a measurement based on the replicated state is
within tolerable limits.

A second form of error arises with respect to the age of a
state variable. Hodson defines the correctness of a variable as
a function of a time interval – a state variable is accurate or
valid for a period of time after being updated. This period of
time is called the validity interval. A variable is deemed to be
temporally consistent if the time of its last update, tL, plus its
validity interval, tV I , is greater than or equal to the current
time, i.e., if tL + tV I ≥ t (Hodson and Baldwin, 2009).

The temporal consistency of a state variable as seen by a
client can be measured by calculating the mean and variance
of its age in the client’s state database. Figure 2 illustrates how
a state variable ages at the client. An update received at ti may

Fig. 2. Aging of distributed state data (Hodson and Baldwin, 2009).

have already aged due to transmission delays; in any case, the
variable ages linearly until the next update is received. The
interarrival time of the updates is denoted by λi and there are
N aging intervals.

The mean age of the entity state as seen by the client is
given by

µec =
1

tN

N∑

i=1

(
λ2i
2

+ αi−1λi

)
(6)

where ec is the entity state as represented in the client’s state
database, λi is the interarrival time, and tN is the total elapsed
wall-clock time over N intervals (Hodson and Baldwin, 2009).

The variance of the entity state’s age at the client is given
by

σ2
ec = mse− µ2

ec (7)

where

mse =
1

tN

N∑

i=1

(
λ3i
3

+ αi−1λ
2
i + α2

i−1λi

)
(8)

The validity interval is determined by properties associated
with how the state changes in relation to time. For any two in-
teracting entities, there is a maximum acceptable error beyond
which the interaction fails to behave correctly. For instance,
spatial errors that are too large may cause a collision detection
routine to trigger late, resulting in intersecting entities rendered
to the display. Simulations supporting analysis can ill afford
such imprecision, particularly for interactions comprising the
system-under-test.

Given a precision requirement for each interaction supported
by the simulation, the accuracy of the state database can be
defined in a number of ways. Firstly, a replica is accurate with
respect to entity e at time t if the spatial error for the entity is
less than its associated precision requirement. This is a binary
condition; the replica is either accurate or not. Formally, the
accuracy at client c with respect to entity e is given by

Ae(t) =

{
1 ‖es(t)− ec(t)‖ ≤ p
0 otherwise

(9)

where es(t) is the entity state at the server, ec(t) is the entity
state at the client, and p is a (spatial) precision requirement.

www.manaraa.com

The overall accuracy Ā(t) of a client is given by the mean
accuracy over all entities, i.e.,

Ā(t) =
1

|E|
∑

e

Ae(t) (10)

where |E| is the total number of entities in the simulation.
Calculating the mean and variance of Ae(t) and Ā(t) over

time provides summary measures of a particular client’s state
database accuracy.

IV. STATE UPDATE POLICIES

A variety of state update mechanisms and policies have
been proposed and investigated by the research community.
The most basic policies are round-robin and periodic policies.
Round-robin state update simply places each client in a
circular queue based on the time it was last sent an update.
At each frame, the server updates as many clients as possible,
starting with the client least recently updated. This policy tends
to perform poorly in systems where the total number of clients
is much larger than the number of clients that can be updated
at each simulation frame.

Periodic update policies send updates to clients at defined
intervals. Note that the round-robin policy is in fact periodic,
however, much more complex periodic schemes are possible.
For instance, some DVE systems provide state update data
streams with multiple periods for the same entity. This allows
clients to choose how often they receive updates – clients
whose entities are not interacting with the server’s choose a
long period stream, while clients needing more state accuracy
can choose a high frequency stream. See (Morse et al., 1996)
for a review of this and other interest management techniques.

Mauve proposed the use of local lag policies to improve
state consistency among nodes in distributed virtual environ-
ments (Mauve, 2000). Local lag retards the effect of user
inputs at the local node while sending a state update to the
remote nodes. Ideally, the lag applied locally is equivalent to
the propagation delay of the state update message and all nodes
see the effects of the input simultaneously. Practice is rarely so
accommodating since each client may have a different amount
of delay, packets may be dropped, and network latency can
vary. Note that local lag degrades responsiveness in favor of
improved state consistency.

The DIS standard specifies the use of dead reckoning
algorithms similar to those outlined in Section II. The vast
majority of research on data consistency issues in DVEs
focuses on improving and optimizing dead reckoning for
a variety of conditions. An early effort by Cai, Lee, and
Chen proposed an auto-adaptive error threshold based on
areas of interest and sensitive regions around each entity (Cai
et al., 1999). The area of interest is defined as a circular
region around an entity in which the entity requires increased
consistency. The sensitive region is a smaller circular region. If
one entity moves into another’s sensitive region, a collision or
some other kind of interaction is likely. Thus the consistency
requirements inside and entity’s sensitive region are higher
still. The authors define four threshold levels based on the

relative position and overlap of entities and their regions. They
conducted a series of experiments using a simulated distributed
environment and measure the average spatial error and number
of messages for differing numbers of entities. Their adaptive
threshold algorithm shows an improvement in both the number
of messages sent and the average error. Unfortunately, they
provided no guidance for choosing the threshold values for
their algorithm. This is important since the superiority of their
approach depends on these choices. In general, however, one
can expect the adaptive algorithm to strike an adequate balance
between consistency and network utilization while showing an
improvement over standard dead reckoning.

Liu (Lui, 2001) explored the use of communication sub-
graphs to determine the optimal synchronization interval for
DVEs with an upper bound on spatial error. He compared the
use of several subgraph generation algorithms to bound the
maximum delay between nodes in the virtual environment.
The optimal synchronization interval was determined using a
discrete time Markov chain model of the spatial error. Once
the optimal interval is found, the network utilization for each
of the communication subgraphs can be computed.

Delaney, Ward, and McLoone (Delaney et al., 2003) pro-
posed a hybrid algorithm that pairs the conventional dead
reckoning model with an experimentally derived model of the
user’s long term strategy. The goal of the hybrid technique is
to reduce network utilization at a given threshold level. Their
work shows an improvement in the number of messages sent,
albeit for a relatively large spatial error threshold.

Yu et al (Yu et al., 2007) consider the problem of allocating
bandwidth to nodes in order to minimizes the spatial error,
subject to time-varying bandwidth constraints. They construct
the problem as a constrained convex optimization problem and
apply Lagrangrian relaxation to make the trade-off between
consistency and network utilization. Minimization of the re-
laxed problem is accomplished with binary search and predic-
tive model of bandwidth consumption based on recent history.
Their work provides an empirical look at the fundamental DVE
trade-off between consistency and bandwidth consumption.
Although they describe in general terms a network aware
bandwidth allocation algorithm, and show provide results
showing it outperforms uniform and proportional allocations,
the algorithm is not specified in detail.

Note the preceding works attempt to optimize dead reck-
oning with respect to network consumption rather than con-
sistency. Excessive bandwidth consumption is generally not
an issue except when scaling a DVE to massive numbers of
clients. In many practical scenarios the number of clients is
bounded and minimizing the number of messages is not re-
quired – after all, unused bandwidth is wasted bandwidth. The
remainder of this section discusses techniques that specifically
optimize dead reckoning for consistency.

Building off Zhou et al’s work on time-space inconsistency
(Zhou et al., 2004), Roberts et al proposed the use of a time-
space threshold instead of a spatial error threshold for dead
reckoning (Roberts et al., 2005). They begin by noting that
simple spatial thresholds can lead to unbounded inconsistency

www.manaraa.com

if the entity deviates from the dead reckoned path but re-
mains inside the error threshold. Using a time-space threshold
mitigates this problem, however, doing so can lead to large
spatial errors over short time periods. The authors demonstrate
a hybrid threshold metric that avoids both of these issues.

Tang and Zhou (Tang and Zhou, 2010) developed a con-
sistency aware update scheduling algorithm for centralized,
single server DVEs with network capacity constraints. They
begin by deriving optimal update schedules to minimize the
impact of time-space inconsistency on user perceptions, noting
that these schedules depend on the network delay and entity
trajectories. The latter, of course, depend on user inputs to
the simulation. The authors then present an update scheduling
algorithm that estimates the time-space inconsistency at each
client and sends updates to the clients with the largest error,
subject to network capacity constraints. Any clients that are
not updated will necessarily have a larger inconsistency during
the next frame and will have a higher priority for update.
Their algorithm shows substantially better performance than
more naive scheduling algorithms such as round-robin or
conventional dead reckoning.

Li and Cai (Li and Cai, 2011) extend the discussion to
a multi-server environment and frame the problem as one
of determining the optimal update period for each replica.
They formulate the problem as convex optimization problem
with inequality constraints and apply the barrier method for
solution.

Both of the foregoing methods assume static network con-
ditions with no possibility of message loss. Li et al (Li et al.,
2012) consider the effects of message loss on update schedul-
ing; however, they ignore the effects of network delay. They
develop scheduling algorithms that compensate for message
loss by sending updates when the time-averaged inconsistency
with loss exceeds the inconsistency without loss.

Li, Tang, Cai, and Li (Li et al., 2013) propose an update
scheduling algorithm that modifies the dead reckoning thresh-
old based on predicting network conditions and estimating
whether the system can compensate for the effects of network
delay and message loss. If the delay and loss rate can be
compensated, the threshold is modified accordingly; if not,
an update message is sent immediately.

V. FAIRNESS ISSUES

In designing distributed virtual environments, it’s important
to ensure the system is fair. Here, fairness is taken to mean
that each node in the system interoperates in such a way that
no node has a systemic advantage or disadvantage (Siegfried
et al., 2011). This is particularly important for comparative
analyses where two or more systems are being evaluated
against each other with a common objective.

Several authors have proposed various measures of fairness.
The simplest of these compute the spatial error variance for
each entity across all system nodes. Various update policies
have been proposed to ensure fairness according to this simple
model (Aggarwal et al., 2005; Li et al., 2011, 2012).

Fig. 3. Fairness space (Chen and El Zarki, 2011).

Fig. 4. Fairness zones.

Brun et al and Chen and Zarki each approach fairness from
the perspective of a multi-dimensional vector space called
playability space or fairness space, respectively (Brun et al.,
2006; Chen and El Zarki, 2011). Typically these spaces are
two-dimensional, with spatial error or inconsistency on one
axis and response time on the other as illustrated in Figure
3. Each node in the system is plotted in this space. A node’s
distance from the origin is termed its playability. The fairness
of the simulation is an aggregate property and is defined as
the standard deviation of playability measured across all nodes.
Millar et al alternately defined fairness with respect to cluster
cohesiveness in the playability space – systems whose nodes
are tightly clustered in the playability space are fair, while
those whose nodes are scattered in playability space are not
(Millar et al., 2014).

Playability and fairness spaces provide the most general
models of fairness in the literature; however, they can be
difficult to compute online and no existing update policies
take advantage of them. Fairness can be explicitly managed
by tuning update policy parameters. Doing so tends to push
the spatial error and response time of all nodes towards that
of the worst performing node. Thus, the system may well be
fair but perform poorly.

Brun et al mentions the idea of a playability zone defined
by a utility function assigned to each interaction (Brun et al.,
2006). This dovetails nicely with Siegfried et al’s assertion

www.manaraa.com

that fairness requirements vary by application and purpose.
Indeed, requirements for consistency, responsiveness, and fair-
ness can vary within a single application depending on entity
interactions (Savery et al., 2010). Extrapolating from this idea
and considering the different application domains, the authors
view fairness as not just a runtime property impacting users’
quality of experience, but also as a design property reflecting a
particular system’s fitness for purpose. This idea is illustrated
in Figure 4.

Here, the fairness space is sub-divided into four equivalence
classes based on the simulation’s broadly intended purpose.
Choices made by the system designers regarding the state
update scheduling policy and its parameters directly impact
whether the simulation is capable of fulfilling that purpose. As
an example, an aerial dogfight simulation intended as an on-
line game only needs to achieve consistency and response time
levels sufficient to engage players and keep them from quitting
in frustration. If the aim of the simulation is instead training;
e.g., to teach basic fighter maneuvering, then the constraints
on consistency and response time get tighter. This is necessary
to ensure that training outcomes transfer to the real world.
Finally, if the aim of the simulation is to test some aspect of the
system (e.g., a new gunsight), then constraints on consistency
and responsiveness become tighter still in order to minimize
confounding factors due to the distributed environment. It
is undesirable, for instance, for inconsistency in the entity
state data to yield incorrect experimental conclusions or for
measurements of an event taken on different system nodes to
vary widely.

The state update policy and parameters must be carefully
chosen to ensure that the consistency and responsiveness of the
simulation remain within constraints defined by its purpose.
For instance, use of local lag techniques are acceptable in
online games with low interactivity and high consistency
requirements such as Pokemon Go. Conversely, use of local
lag in highly interactive flight training environments can result
in pilot induced oscillations and a failure to meet training
requirements due to “fighting the sim.” In any case, a loss
of perceived fairness results in user disengagement and ulti-
mately an unwillingness to participate in the DVE (Yasui and
Ishibashi, 2004; Chen et al., 2009; Beznosyk et al., 2011)

VI. CONCLUSIONS

This article presents a review and survey of the distributed
virtual environment literature with respect to three key areas:
1) state consistency errors, 2) state update policies, and 3)
fairness issues. The choice of a particular consistency mea-
sure and state update algorithm can have a direct impact
on the system’s fairness. For instance, under the TSI error
model, small constant spatial errors result in an unbounded
measure of inconsistency. A state update policy controlling
for fairness might well be required to introduce lag to ensure
TSI variation remains small across all simulation nodes. As a
consequence, the overall simulation may become unfit for its
intended purpose, e.g., if the average inconsistency crossed
some maximum threshold. This particular example is not

insurmountable; however, it serves to illustrate the larger point
– there are complex relationships between consistency, update
policy, fairness, and fitness for purpose. Consequently, we
conclude by identifying some areas we believe warrant further
research.

In practice, distributed virtual environments tend to be
designed using optimistic state update policies intended to
minimize state inconsistency, e.g., basic dead-reckoning. How-
ever, none of the surveyed policies provide upper bounds on
the amount of inconsistency they allow. Nor do they provide
any a priori estimation of the amount of inconsistency likely
to be observed in practice. Thus a best-of-breed update policy
may well provide minimal inconsistency and still exceed the
system’s requirements. Research into predictive models of
virtual environment consistency is needed to provide designers
the tools to adequately choose and tune state update policies.

Additionally, consistency is generally measured with respect
to continuous state variables with easily derived rates of
change and relatively simple error measures. For instance,
nearly all of the error models surveyed are related to entity po-
sition information. However, many of the interesting variables
in a distributed virtual environment (Did I hit my enemy? Is
my enemy dead?) are discrete in nature. While these discrete
variables often rely on continuous variables, e.g., collision
detection depends on position data, our survey of the literature
found very little related to the impact of inconsistent discrete
state. Moreover, the consistency of discrete state variables
is directly related to the plausibility of outcomes between
interacting entities and is a key challenge for distributed
virtual environments supporting engineering test and analysis
applications.

In general, DVEs cannot provide state consistencies stronger
than eventual consistency. This implies there is no upper
bound on the divergence in state between any to nodes in
the system during the simulation’s execution. Consequently,
we believe the use of DVEs in test and analysis should be
limited to exploratory analysis and analysis of alternatives to
minimize the impact of implausible outcomes. Moreover, we
believe state update policies for test and analysis applications
should be approached from the point of view of measurement
calibration – that is, the simulation system should be viewed
as an experimental device who’s precision must be determined
and calibrated before it can be used for meaningful experi-
ments. Our future research includes development of stochastic
plausibility models designed to quantify the expected precision
of DVEs used to support engineering test and analysis.

REFERENCES

Aggarwal S, Banavar H, Khandelwal A, Mukherjee S, and
Rangarajan S (2004). Accuracy in dead-reckoning based
distributed multi-player games. In Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support for
games, pages 161–165. ACM.

Aggarwal S, Banavar H, Mukherjee S, and Rangarajan S
(2005). Fairness in dead-reckoning based distributed multi-
player games. In Proceedings of 4th ACM SIGCOMM

www.manaraa.com

workshop on Network and system support for games, pages
1–10. ACM.

Beznosyk A, Quax P, Coninx K, and Lamotte W (2011).
Influence of network delay and jitter on cooperation in
multiplayer games. In Proceedings of the 10th International
Conference on Virtual Reality Continuum and Its Applica-
tions in Industry, pages 351–354. ACM.

Brun J, Safaei F, and Boustead P (2006). Fairness and playa-
bility in online multiplayer games. Faculty of Informatics-
Papers, page 232.

Cai W, Lee F, and Chen L (1999). An auto-adaptive dead
reckoning algorithm for distributed interactive simulation.
In Proceedings of the thirteenth workshop on Parallel
and distributed simulation, pages 82–89. IEEE Computer
Society.

Chen K.-T, Huang P, and Lei C.-L (2009). Effect of net-
work quality on player departure behavior in online games.
Parallel and Distributed Systems, IEEE Transactions on,
20(5):593–606.

Chen P and El Zarki M (2011). Perceptual view inconsistency:
An objective evaluation framework for online game quality
of experience (qoe). In Proceedings of the 10th Annual
Workshop on Network and Systems Support for Games,
NetGames ’11, pages 2:1–2:6, Piscataway, NJ, USA. IEEE
Press.

Delaney D, Ward T, and McLoone S (2003). On reducing
entity state update packets in distributed interactive simula-
tions using a hybrid model. IASTED.

DIS Steering Committee (1998). IEEE standard for distributed
interactive simulation-application protocols. IEEE Standard,
1278.

Hodson D. D and Baldwin R. O (2009). Characterizing,
measuring, and validating the temporal consistency of live–
virtual–constructive environments. Simulation, 85(10):671–
682.

Hodson D. D and Hill R. R (2013). The art and science of live,
virtual and constructive simulation for test and analysis. The
Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, page 1548512913506620.

Kuhl F, Weatherly R, and Dahmann J (1999). Creating
computer simulation systems: an introduction to the high
level architecture. Prentice Hall PTR.

Li Y and Cai W (2010). Consistency aware dead reckoning
threshold tuning with server assistance in client-server-
based dves. In Computer and Information Technology (CIT),
2010 IEEE 10th International Conference on, pages 2925–
2932. IEEE.

Li Y and Cai W (2011). Determining optimal update period for
minimizing inconsistency in multi-server distributed virtual
environments. In Proceedings of the 2011 IEEE/ACM
15th International Symposium on Distributed Simulation
and Real Time Applications, DS-RT ’11, pages 126–133,
Washington, DC, USA. IEEE Computer Society.

Li Z, Cai W, Tang X, and Zhou S (2011). Dead reckoning-
based update scheduling against message loss for improv-
ing consistency in dves. In Principles of Advanced and

Distributed Simulation (PADS), 2011 IEEE Workshop on,
pages 1–9. IEEE.

Li Z, Cai W, Tang X, and Zhou S (2012). Loss-aware dr-
based update scheduling for improving consistency in dves.
Journal of Simulation, 6(3):164–178.

Li Z, Tang X, Cai W, and Li X (2013). Compensatory dead-
reckoning-based update scheduling for distributed virtual
environments. SIMULATION.

Lui J. C. S (2001). Constructing communication subgraphs
and deriving an optimal synchronization interval for dis-
tributed virtual environment systems. Knowledge and Data
Engineering, IEEE Transactions on, 13(5):778–792.

Mauve M (2000). How to keep a dead man from shooting.
In Interactive Distributed Multimedia Systems and Telecom-
munication Services, pages 199–204. Springer.

Millar J. R, Hodson D. D, Lamont G. B, and Peterson G. L
(2014). Multi-objective optimization of dead-reckoning
error thresholds for virtual environments. In Collaboration
Technologies and Systems (CTS), 2014 International Con-
ference on, pages 562–569. IEEE.

Millar J. R, Hodson D. D, Peterson G. L, and Ahner D. K
(2015). Data quality challenges in distributed Live-Virtual-
Constructive test environments. ACM Journal of Data and
Information Quality.

Morse K. L et al. (1996). Interest management in large-scale
distributed simulations. Information and Computer Science,
University of California, Irvine.

Noseworthy J. R (2008). The test and training enabling archi-
tecture (TENA) supporting the decentralized development of
distributed applications and lvc simulations. In Distributed
Simulation and Real-Time Applications, 2008. DS-RT 2008.
12th IEEE/ACM International Symposium on, pages 259–
268. IEEE.

Powell E. T and Noseworthy J. R (2012). The test and
training enabling architecture (tena). Engineering Principles
of Combat Modeling and Distributed Simulation, page 449.

Roberts D, Aspin R, Marshall D, Mcloone S, Delaney D,
and Ward T (2008). Bounding inconsistency using a
novel threshold metric for dead reckoning update packet
generation. Simulation, 84(5):239–256.

Roberts D, Marshall D, MacLoone S, Delaney D, Ward T,
and Aspit R (2005). Exploring the use of local consis-
tency measures as thresholds for dead reckoning update
packet generation. In Distributed Simulation and Real-Time
Applications, 2005. DS-RT 2005 Proceedings. Ninth IEEE
International Symposium on, pages 195–202. IEEE.

Savery C, Graham T, and Gutwin C (2010). The human factors
of consistency maintenance in multiplayer computer games.
In Proceedings of the 16th ACM international conference on
Supporting group work, pages 187–196. ACM.

Siegfried R, Lüthi J, Herrmann G, and Hahn M (2011). How
to ensure fair fight in lvc simulations: Architectural and
procedural approaches. NATO Modelling and Simulation
Group, 87.

Singhal S and Zyda M (1999). Networked virtual environ-
ments: design and implementation. ACM Press/Addison-

www.manaraa.com

Wesley Publishing Co., New York, NY, USA.
Tang X and Zhou S (2010). Update scheduling for improving

consistency in distributed virtual environments. Parallel and
Distributed Systems, IEEE Transactions on, 21(6):765–777.

Terry D (2013). Replicated data consistency explained through
baseball. Communications of the ACM, 56(12):82–89.

Yasui T and Ishibashi Y (2004). Consistency and fairness
among players in networked racing games: Influence of
network delays. In Proceedings of the ICAT ’04 Workshop
on VR Applications and Entertainment Technology, pages
43–47.

Yu Y, Li Z, Shi L, Chen Y.-C, and Xu H (2007). Network-
aware state update for large scale mobile games. In
Computer Communications and Networks, 2007. ICCCN
2007. Proceedings of 16th International Conference on,
pages 563–568. IEEE.

Zhou S, Cai W, Lee B.-S, and Turner S. J (2004). Time-space
consistency in large-scale distributed virtual environments.
ACM Transactions on Modeling and Computer Simulation
(TOMACS), 14(1):31–47.

www.manaraa.com

Deriving LVC State Synchronization Parameters
from Interaction Requirements

Jeremy R. Millar∗, Douglas D. Hodson† and Richard Seymour‡
Air Force Institute of Technology, Wright-Patterson AFB, Dayton OH 45344

Email: ∗jmillar@afit.edu, †dhodson@afit.edu, ‡rseymour@afit.edu

Abstract—Choosing synchronization update parameters for
live, virtual, constructive simulations is of particular importance
when the simulation is supporting engineering test and evaluation
events. Failure to choose these parameters appropriately can
lead to substantial data quality problems. This work introduces
the notion of plausibility limits for entity interactions based on
spatial errors derived from state variable divergence. Moreover, it
presents a state update model that provides probabilistic guaran-
tees on meeting interaction requirements expressed as plausibility
limits. Finally, it presents an example of these guarantees based
on entity state data sampled from a popular online game.

Live, virtual, and constructive (LVC) simulation technolo-
gies are gaining traction within the US Department of Defense
(DoD) test and evaluation community as a means of supporting
analysis and decision making processes [1], [2], [3]. LVC
environments provide opportunities to facilitate testing in joint
environments, include a broad spectrum of defense assets not
readily available to live test, and reduce test schedules and
costs [3].

The DoD defines three primary classes of simulation: 1)
live, 2) virtual, and 3) constructive. Live simulations comprise
real people operating real equipment in the real world; for
instance, traditional military training exercises. Virtual sim-
ulations involve real people operating simulated equipment
in a simulated environment such as man-in-the-loop flight
simulators. Constructive simulations are wholly synthetic; the
entities, equipment, and environment are all simulated.

LVC simulations are hybrid simulations combining aspects
of live, virtual, and constructive simulations to various degrees
[3]. They often involve real people and systems interacting
with simulated entities in a virtual environment. From a
participant’s perspective, it makes no difference if another
entity is real or simulated since all interactions occur through
a virtual environment. Moreover, the participants are often
geographically distributed in order to minimize costs or to
leverage unique or rare assets. The virtual environment pro-
vides a shared sense of time and space to the simulation’s
participants, allowing them to interact as if they were actually
present in the same location.

A key issue for LVC simulations, as for all distributed
virtual environments, is the maintenance of dynamic shared
state between participating nodes. The dynamic shared state
comprises all of the changing information that must be main-
tained at each participating site to present a consistent view
of the virtual environment. Frequently, the dynamic shared
state includes information about who is participating in the

simulation, the position of various moving entities, and so
forth. Failure to keep the dynamic shared state adequately
synchronized across sites destroys the illusion of shared time
and place that LVC simulations and other virtual environments
require [4].

In general, absolute consistency of dynamic state can be
ensured by requiring acknowledgments for state update mes-
sages and forcing locked time-step execution of the distributed
simulation across all sites. Doing so necessarily reduces the
simulation’s responsiveness to user input as the user must
wait until previous inputs have propagated throughout the
entire system before issuing new commands. Thus, there is
a fundamental trade-off between state consistency and sim-
ulation responsiveness [4], [5]. Lock-step synchronization is
not an option for simulations that include live entities; for
example, an aircraft must continue moving while state updates
propagate, resulting in a loss of absolute consistency.

Typically, consistency requirements are relaxed in order to
improve responsiveness. Speculative synchronization protocols
such as dead reckoning allow the simulation to respond
immediately to new user inputs and continue execution while
state updates are propagated. This approach is standardized in
IEEE Standard 1287, Distributed Interactive Simulation (DIS)
[6].

The degree to which consistency and responsiveness are
relaxed as well as the algorithms employed to do so are
important decisions in the design of LVC simulations. Some
of these decisions are constrained by other requirements; for
instance, most DIS compliant simulations employ speculative
state synchronization in the form of dead reckoning. Several
pertinent questions arise; for instance, how often should state
updates be sent? Should user input be delayed to account for
network latency? If so, by how much? That is, even within the
relevant standards, simulation designers have wide latitude to
select synchronization protocols and parameters.

There is little traceability from high-level simulation re-
quirements to low-level synchronization parameters. Often, a
simulation is constructed and the synchronization protocol is
hand tuned until the system’s performance appears correct –
most likely by subjective means. In the best case, the state
synchronization system meets or exceeds the consistency and
responsiveness required to meet the simulation’s goals. In the
worst case, the (unspecified) consistency and responsiveness
targets are not met, and the simulation may behave in subtle
and incorrect ways.

www.manaraa.com

Since consistency is generally relaxed in favor of respon-
siveness, these errors most often manifest as spatial errors
wherein each simulation participant (or node) perceives the
same entity at different locations. This breaks the fundamental
illusion of a shared space. We propose that the effect of these
spatial errors can be mitigated by explicitly accounting for
entity interaction requirements while designing the simulations
synchronization subsystem.

The contribution of this paper is two-fold. First, it presents a
survey of the existing literature on entity interactions and their
requirements and defines a formalism for entity interaction
requirements based on error tolerances. Second, it presents
a method of deriving synchronization parameters from in-
teraction requirements and a model of spatial error in dead
reckoning-based simulations.

I. SYSTEM MODEL

A distributed LVC simulation system consists of two or
more participating nodes connected by a communication net-
work. Each node is responsible for simulating the state of one
or more entities based on user inputs, physics models, and
interactions with other entities and the environment.

In addition to maintaining the state of its own entities, each
node also keeps a replica of the state for every other entity
in the simulation. Thus, the simulation state can be viewed
as a geographically distributed database with full replication
[7]. Crucially, each node only writes to the records associated
with its local entities; all other records are read-only. Replica
records are updated when a message is received from the own-
ing node. Optimistic consistency maintenance algorithms such
as dead reckoning may be employed to improve consistency
across replicas.

II. INTERACTIONS

Interactions between simulated entities are a defining char-
acteristic of LVC simulations; without interactions, there
would be no need to design and built a distributed simula-
tion system. Indeed, the difference between two simulations
largely comes down to the set of entities involved and the
interactions among them. For instance, an air-to-air combat
simulation might include ground units as part of the setting or
window dressing, but not allow aircraft to interact with them.
Conversion from an air-centric to combined arms simulation
is as simple as expanding the set of allowed interactions to
include entities on the ground.

In any case, the set of interactions supported by a sim-
ulation directly impact it’s consistency and responsiveness
requirements. Some interactions, such as collision detection
or engaging an entity with a high-precision weapon, have a
low tolerance for inconsistency in the simulation state. Others,
such as tracking a target with a long-range sensor, can tolerate
higher levels of inconsistency before erroneous results are
generated.

In [8], Itzel et. al. present the notion of the interaction
context for a state update. This context captures the type,

affected entities, and any dependent interactions for an up-
date message. From this information, system designers can
derive consistency and interactivity requirements. For instance,
state updates for an entity moving through the environment
without affecting with any other entities would have low
consistency and interactivity requirements. Updates for two
entities engaged in combat, on the other hand, would have
high consistency and interactivity requirements.

Similarly, Claypool and Claypool have categorized user
actions in online games according to their precision and
deadline requirements [9]. Here, precision means the degree of
accuracy necessary to complete the (inter)action successfully
and is analogous to a consistency requirement. High precision
actions show a high sensitivity to state inconsistency, while
low precision actions are more tolerant of inconsistent state.
Deadline refers to the time required to achieve the final result
of an action. The authors show that network latency has a
larger impact on game actions with tight precision or deadline
requirements.

The foregoing works set the stage for an investigation
of interactions, however, they have some limitations when
applied to DIS-based LVC simulations. First, both assume a
centralized client/server system responsible for processing user
actions. Itzel’s interactivity and Claypool’s deadline require-
ments are derived from this assumption. Highly interactive
actions (those with tight deadlines) require a rapid response
from the server processing the actions. This is exactly what is
meant by simulation responsiveness [4], [5]. However, peer-
to-peer LVC simulations are able to respond immediately to
user inputs since no communication with other system nodes
is required. With that said, responsiveness does impact an LVC
system’s ability to meet interaction requirements; Section III
explores this relationship.

Second, and more problematically, both Itzel and Claypool
characterize the consistency (precision) requirements derived
from examining interactions categorically. This makes it dif-
ficult to derive concrete system requirements. For example,
just how precise must a “high” precision action be? A more
formal model of interaction is required to accurately derive
consistency and responsiveness requirements from interaction
requirements.

Suppose we have a peer-to-peer LVC simulation with n
entities denoted ei, i = 1 . . . n. An interaction expresses a
state dependency between two entities and is denoted by the
tuple

I = (ei, ej , l) (1)

The source of the interaction, ei, depends on the state of the
target entity ej . Note the dependence is unidirectional. This
allows asymmetric interactions to be modeled. For instance, ei
may be a long-range sensor tracking ej at a sufficiently large
distance so that ej is unaware of ei. Situations involving two
entities that are mutually interacting can be modeled with a
pair of interactions I1 and I2.

www.manaraa.com

The spatial error tolerance of an interaction is given by
l and specifies the maximum spatial error the interaction
can support before producing incorrect results. We refer to
this maximum error as the plausibility limit of an interaction
since errors in excess of l are likely to result in implausible
results on at least one node of the simulation. Note that we
are only concerned with positional state data since nearly
every interaction depends on accurate position information.
Moreover, positional updates account for nearly all of the
network traffic generated by an LVC simulation [10].

The parameters of a particular interaction should be defined
by the engineering requirements the simulation is meant to
address. For instance, in an aerial refueling simulation, if the
boom operator must place the boom within 10 cm of the
fuel receptacle to successfully couple the aircraft, then the
plausibility limit for that interaction would be 10 cm.

III. SPATIAL ERROR MODEL

Deriving state synchronization parameters from interaction
tolerances requires a model for how spatial state inconsistency
develops in the first place. The node hosting the target entity
ej of an interaction maintains the true value of its state. If
the replica of that state at the node hosting the interaction’s
source entity deviates from the true value, there is a state
inconsistency. Any inconsistency in the position data is called
spatial error. This error represents the difference between ei’s
perception of ej’s position and ej’s true position.

More formally, and following the definitions in [11], let the
real path, R(t), represent the true position of ej at any time
t. R(t) is a function of the user input and physics models
employed by the simulation node nj hosting ej . At intervals,
nj sends a message updating the replica of ej at the source
node ni. These state updates coupled with any dead reckoning
algorithms in use at ni yield the placed path, P(t). This path
represents ei’s perception of ej’s position at any time t. The
difference between the real and placed paths

E(t) = R(t)− P(t) (2)

is the spatial error at time t.
Moreover, the position of the entity on the placed path after

∆t seconds can be approximated using Taylor series expansion
[12],

R(t+ ∆t) ≈ R(t) +
dR
dt

∆t+
1

2

d2R
dt2

∆t2

Letting s(t) = R(t), v(t) = dR
dt , and a(t) = d2R

dt2 yields
the familiar kinematic equation

R(t+ ∆t) ≈ s(t) + v(t)∆t+
1

2
a(t)∆t2

where s(t), v(t), and a(t) represent the entity’s position,
velocity, and acceleration at time t.

The placed path at time t + ∆t depends on the dead
reckoning algorithm in use at the replica node. If no dead
reckoning is employed, then

P(t+ ∆t) = P(t) = s(t)

If first-order dead reckoning is employed, then

P(t+ ∆t) = s(t) + v(t)∆t

Combining the expressions for the real and placed paths
yields the following expressions for the spatial error at time
t+ ∆t:

E(t+ ∆t) = v(t)∆t+
1

2
a(t)∆t2 (3)

in the case of no dead reckoning and

E(t+ ∆t) =
1

2
a(t)∆t2 (4)

in the case of first-order dead reckoning.
If the entity’s maximum velocity and acceleration are known

(a safe assumption) and tupdate is the time the last update was
sent, then the spatial error after receiving the update can be
bounded above as

E(tupdate + ∆t) ≤ vmax∆t+
1

2
amax∆t2 (5)

and

E(tupdate + ∆t) ≤ 1

2
amax∆t2 (6)

for the no dead reckoning and first-order dead reckoning cases
respectively.

IV. DERIVING SYNCHRONIZATION PARAMETERS

Combining the notion of an interaction with the foregoing
error model provides a straightforward means of deriving syn-
chronization protocol parameters from high-level engineering
requirements. Recall that an interaction is described by

I = (ei, ej , l)

where l specifies the maximum error in ej’s position that yields
a correct result for the interaction. Thus, for a simulation
employing dead reckoning, we can compute the temporal
accuracy interval [13] for a state update in the context of
interaction I as

∆t =

√
2 ∗ l
||amax||

(7)

Assuming state updates are sent from ej to ei periodically,
the quantity ∆t specifies the maximum time for which a state
update is accurate. After ∆t seconds, the update will have been
superseded by another and the spatial error will have exceeded
the tolerance of interaction I . Note that periodic state updates
have been shown to result in optimal state consistency [14].
Thus, our concern is to find the largest interupdate period p
that meets the error tolerance for interaction I .

www.manaraa.com

To do so, we note that the temporal accuracy interval is the
difference between the time the last update was sent, tupdate
and the time of its use, tuse. That is,

∆t = tuse − tupdate
Noting that the current value of the state becomes invalid

when the next update is sent and letting d represent the total
update propagation delay (accounting for network latency,
queuing, and internal delays associated with simulation archi-
tecture), the largest accuracy interval is obtained when

∆t = tupdate + p+ d− tupdate (8)

To summarize, let ei be an entity interacting with entity
ej . Suppose the interaction has some maximum spatial error
tolerance l. Let ||amax|| be the maximum acceleration of
ej and d be the state update propagation delay. Then the
maximum period between state updates from ej to ei is given
by

p =

√
2 ∗ l
||amax||

− d (9)

V. DISTRIBUTION OF p

Guarantees on system latency require establishing a mes-
saging policy such that

1

2
||amax||(p+ d)2 ≤ l, (10)

where a is the acceleration, p is the inter-update period, d
is the delay, and l is the plausibility limit. Assuming ideal
system design involves maximizing the inter-update period to
minimize the number of messages sent, this research focuses
on the plausibility limit in Equation 10 being exactly met, not
exceeded, or

1

2
||amax||(p+ d)2 = l. (11)

Solving for p gives results in Equation 9, which is effectively
the largest value of p that meets the plausibility limit for
specific values of amax and d.

Within these equations, amax and d are independent ran-
dom variables and l is a constant set by the end users. As
independent random variables, the joint distribution of amax

and d is the product of their individual distributions, or

fA,D(a, d) = fA(a)fD(d). (12)

In this example problem, Amax ∼ Double Exponential(0,σ2
1)

and D ∼ Shifted Exponential(µ, σ2
2), so

fA,D(a, d) =
1

2σ1
e−
|a|
σ1

1

σ2
e−

d−µ
σ2 . (13)

Since p is a function of amax, d, and l from Equation
9, a transformation can be performed on fA,D(a, d) into
fP,D(p, d). Let

g(p) = p =

√
2l

a
− d, (14)

from Equation 9, then

g−1(p) = a =
2l

(p+ d)2
. (15)

Using a univariate transformation,

fP,D(p, d) = fA,D(g−1(p), d)

∣∣∣∣
∂a

∂p

∣∣∣∣ .

Due to the change in monotonicity at a = 0, this transforma-
tion is actually the sum of two transformations

fP,D(p, d) = fA,D(|g−1(p)|, d)

∣∣∣∣
∂a

∂p

∣∣∣∣ , a < 0

+fA,D(g−1(p), d)

∣∣∣∣
∂a

∂p

∣∣∣∣ , a ≥ 0

=
1

2σ1
e−

∣∣∣∣ 2l
(p+d)2

∣∣∣∣
σ1

1

σ2
e−

d−µ
σ2

∣∣∣∣
∂

∂p

2l

(p+ d)2

∣∣∣∣+

1

2σ1
e−

2l
(p+d)2

σ1
1

σ2
e−

d−µ
σ2

∣∣∣∣
∂

∂p

2l

(p+ d)2

∣∣∣∣

=
1

σ1
e−

2l
(p+d)2

σ1
1

σ2
e−

d−µ
σ2

4l

(p+ d)3
. (16)

Integrating over all values of d provides the marginal distri-
bution of p

fP (p) =

∫ ∞

0

1

σ1
e−

2l
(p+d)2

σ1

∗ 1

σ2
e−

d−µ
σ2

4l

(p+ d)3
∂d (17)

Recall, p was crafted to be the maximum inter-update period
that still meets the plausibility limit. Integrating from 0 to a
particular value of p provides the probability that p exceeds
the required plausibility limit, or

α =

∫ p

0

∫ ∞

0

1

σ1
e−

2l
(p+d)2

σ1

∗ 1

σ2
e−

d−µ
σ2

4l

(p+ d)3
∂d∂x (18)

Rather than performing a Monte Carlo simulation to find the
probability that a given p will meet the plausibility limit, Eqs.
17 and 18 can be computed directly.

VI. EXAMPLE APPLICATION

As an example, we computed the plausibility exceedence
probability for World of Warcraft entity position data. Sample
data was obtained from the the Game Trace Archive at Delft
University of Technology [16]. This data consists of entity
position traces sampled at 1 second intervals over a period of
24 hours. Velocity and acceleration data were derived from the
position traces and an exponential distribution was fit to the
acceleration via maximum likelihood estimation (λ̂ = 1.58).
Fig.1 plots a histogram of the entity accelerations and the fitted
distribution.

www.manaraa.com

Fig. 1: Probability density of acceleration data sampled from World of Warcraft motion traces [15]. The dotted line is a
maximum likelihood fit of an exponential distribution with λ̂ = 1.58.

Exceedence probability curves were computed using the
acceleration distribution fit and a shifted exponential delay
distribution with a nominal delay of 0.035 ms and λ = 0.042
ms. The delay parameters are based on Verizon’s network
performance data for cross-country links within the United
States. Plausibility limits were set at l = 10, 1.0 and 0.1 me-
ters. Exceedence probabilities were calculated for interupdate
periods of 0 to 10 seconds. The resulting curves are plotted
in Fig.2.

There are several interesting results apparent in this plot.
First, interupdate periods for interactions that require loose
plausibility limits can be quite large before there is a signif-
icant probability of exceeding the limit. Moreover, there is
a substantial region of the curve for which the exceedence
probability is effectively zero. Second, the likelihood of ex-
ceeding the plausibility limit of an interaction rapidly increases
as the limits become smaller. Finally, for interactions with
small plausibility limits (less than 0.1 meters), there is always
some chance of exceeding the limit. This can be problematic
for LVC test events requiring high precision results.

VII. CONCLUSION

In this paper, we have presented a model of error in
the positional state variables of LVC simulations based on

dead-reckoning and the characteristics of real-time sensor
systems, introduced the notion of plausibility limits for entity
interactions, and derived a means of computing the probability
that a given inter-update period meets a particular plausibility
limit. Taken together, these contributions provide a means
of probabilistically bounding the error associated with entity
motion and consequently estimating the quality of derived data
– a key challenge for experimentation in LVC environments
[7].

ACKNOWLEDGMENTS

This research was supported by the Office of the Secretary
of Defense, Operational Test and Evaluation (OSD DOT&E)
and the Test Resource Management Center (TRMC) with the
Science of Test Research Consortium.

DISCLAIMER

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the US
Government.

www.manaraa.com

Fig. 2: Exceedence probabilities for plausibility limits of l = 10, 1.0 and 0.1 with exponential acceleration and delay distributions
(λ̂ = 1.58 and λ̂ = 0.7 respectively).

REFERENCES

[1] E. P. Parker, N. E. Miner, B. P. Van Leeuwen, and J. B. Rig-
don, “Testing unmanned autonomous system communications in a
live/virtual/constructive environment,” International Test and Evaluation
Association Journal (ITEA), vol. 30, pp. 513–522, 2009.

[2] B. Van Leeuwen, V. Urias, J. Eldridge, C. Villamarin, and R. Olsberg,
“Performing cyber security analysis using a live, virtual, and constructive
(lvc) testbed,” in Military Communications Conference, 2010-MILCOM
2010. IEEE, 2010, pp. 1806–1811.

[3] D. D. Hodson and R. R. Hill, “The art and science of live, virtual,
and constructive simulation for test and analysis,” The Journal of De-
fense Modeling and Simulation: Applications, Methodology, Technology,
vol. 11, no. 2, pp. 77–89, 2014.

[4] S. Singhal and M. Zyda, Networked virtual environments: design and
implementation. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1999.

[5] D. D. Hodson and R. O. Baldwin, “Performance analysis of live-virtual-
constructive and distributed virtual simulations: defining requirements in
terms of temporal consistency,” 2009.

[6] DIS Steering Committee, “IEEE standard for distributed interactive
simulation-application protocols,” IEEE Standard 1278, 1998.

[7] J. R. Millar, D. D. Hodson, G. L. Peterson, and D. K. Ahner,
“Data quality challenges in distributed live-virtual-constructive test
environments,” J. Data and Information Quality, vol. 7, no. 1-2, pp. 2:1–
2:3, Apr. 2016. [Online]. Available: http://doi.acm.org/10.1145/2850420

[8] L. Itzel, R. Suselbeck, G. Schiele, and C. Becker, “Specifying con-
sistency requirements for massively multi-user virtual environments,” in

IEEE International Workshop on Haptic Audio Visual Environments and
Games (HAVE). IEEE, 2011, pp. 1–2.

[9] M. Claypool and K. Claypool, “Latency can kill: precision and deadline
in online games,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems. ACM, 2010, pp. 215–222.

[10] K. L. Morse et al., Interest management in large-scale distributed sim-
ulations. Information and Computer Science, University of California,
Irvine, 1996.

[11] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Rangara-
jan, “Accuracy in dead-reckoning based distributed multi-player games,”
in Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games. ACM, 2004, pp. 161–165.

[12] D. Hanawa and T. Yonekura, “On the error modeling of dead reckoned
data in a distributed virtual environment,” in International Conference
on Cyberworlds. IEEE, 2005, pp. 8–pp.

[13] H. Kopetz, Real-time systems: design principles for distributed embed-
ded applications. Springer, 2011.

[14] X. Tang and S. Zhou, “Update scheduling for improving consistency
in distributed virtual environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 6, pp. 765–777, 2010.

[15] S. Shen, N. Brouwers, A. Iosup, and D. Epema, “Characterization of
human mobility in networked virtual environments,” in Proceedings of
Network and Operating System Support on Digital Audio and Video
Workshop. ACM, 2014, p. 13.

[16] Y. Guo and A. Iosup, “The game trace archive,” in Proceedings of the
11th Annual Workshop on Network and Systems Support for Games, ser.
NetGames ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 4:1–4:6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2501560.2501566

www.manaraa.com

Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka and S.E. Chick, eds.

Sources of Unresolvable Uncertainties
in Weakly Predictive Distributed Virtual Environments

Jeremy R. Millar
Communications and Information Directorate

Air Force Institute of Technology
2950 Hobson Way

Wright Patterson AFB, OH 45433

Jason A. Blake
Simulation and Analysis Facility

Air Force Life Cycle Management Center
Bldg. 802, 2302 8th St., Area B

Wright Patterson AFB, OH 45433

Douglas D. Hodson
Department of Electrical and Computer Engineering

Air Force Institute of Technology
2950 Hobson Way

Wright Patterson AFB, OH 45433

J.O. Miller
Raymond R. Hill

Department of Operational Sciences
Air Force Institute of Technology

2950 Hobson Way
Wright Patterson AFB, OH 45433

ABSTRACT

This work expands the notion of unresolvable uncertainties due to modeling issues in weakly predictive
simulations to include unique implementation induced sources that originate from fundamental trade-offs
associated with distributed virtual environments. We consider these trade-offs in terms of the Consistency,
Availability, and Partition tolerance (CAP) theorem to abstract away technical implementation details.
Doing so illuminates systemic properties of weakly predictive simulations, including their ability to produce
plausible responses. The plausibility property in particular is related to fairness concerns in distributed
gaming and other interactive environments.

1 INTRODUCTION

This paper considers two particular kinds of uncertainties that arise in distributed virtual environments and
their relationship to weakly predictive simulation systems. We provide a review of uncertainties arising
from insufficient knowledge about a system being modeled along with uncertainties arising due to the
infrastructure of the experimental apparatus.

We consider the implementation-oriented aspects of distributed architectures from the perspective of the
Consistency, Availability and Partition tolerance (CAP) theorem (Redmond and Wilson 2012) to abstract
away details. Because the CAP theorem makes a strong statement concerning fundamental trades between
three orthogonal aspects of any distributed system that manages a repository of data, it provides a means
to reason about the quality of that data as a source from which an analysis often begins. Finally, we
conclude with some observations concerning the use of weakly predictive simulated systems to support
analysis-focused experiments.

This paper is organized as follows. Section 2 presents a review of uncertainty quantification and
sources of uncertainty for computer-based experiment. Modeling human behavior in the presence of
insufficient knowledge is the subject of Section 3 which illuminates the motivation to include humans
within the simulation environment. Section 4 reviews how unresolvable uncertainties associated with
modeling concerns fit within a topology of logical uses for simulation; of particular interest is the ‘plausible
outcomes’ branch. Section 5 reviews fundamental tradeoffs made to create a highly interactive, responsive,

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

distributed virtual environments and their associated issues with data consistency. We next characterize
these issues as a CAP theorem problem. Section 6 highlights the concept of plausibility in relation to
dynamic state space consistency issues. We conclude in Section 7 by organizing the two major sources of
uncertainty (modeling and architecture) as two sub-branches to ‘plausible outcomes’ that lead to weakly
predictive simulations.

2 UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) is the science of quantitative characterization and reduction of uncertainties
in both computational and real world applications. UQ identifies and categorizes different sources of
uncertainty with domains of interest. A casual literature search for areas of categorization and quantification
of uncertainty reveals active work in finance, economics, manufacturing and even climate change.

The role of simulation is often the identification and modeling of uncertainty to understand its impact
or effect on some aspect of system performance or operation. For the domain of computer-based experi-
mentation, (Kennedy and O’Hagan 2001) categorized sources that have grown into a more exhaustive list
that can be found here (Wikipedia 2016).

• Parameter uncertainty, which comes from the model parameters that are inputs to the computer
model (mathematical model) but whose exact values are unknown to experimentalists and cannot
be controlled in physical experiments, or whose values cannot be exactly inferred by statistical
methods. Examples are the local free-fall acceleration in a falling object experiment, various material
properties in a finite element analysis for engineering, and multiplier uncertainty in the context of
macroeconomic policy optimization.

• Parametric variability, which comes from the variability of input variables of the model. For
example, the dimensions of a work piece in a process of manufacture may not be exactly as
designed and instructed, which would cause variability in its performance.

• Structural uncertainty, aka model inadequacy, model bias, or model discrepancy, which comes from
the lack of knowledge of the underlying true physics. It depends on how accurately a mathematical
model describes the true system for a real-life situation, considering the fact that models are almost
always only approximations to reality. One example is when modeling the process of a falling
object using the free-fall model; the model itself is inaccurate since there always exists air friction.
In this case, even if there is no unknown parameter in the model, a discrepancy is still expected
between the model and true physics.

• Algorithmic uncertainty, aka numerical uncertainty, which comes from numerical errors and numer-
ical approximations per implementation of the computer model. Most models are too complicated
to solve exactly.

• Experimental uncertainty, aka observation error, which comes from the variability of experimental
measurements. The experimental uncertainty is inevitable and can be noticed by repeating a
measurement for many times using exactly the same settings for all inputs/variables.

• Interpolation uncertainty, which comes from a lack of available data collected from computer model
simulations and/or experimental measurements. For other input settings that do not have simulation
data or experimental measurements, one must interpolate or extrapolate in order to predict the
corresponding responses.

Structural and interpolation uncertainty are of particular interest in relation to this work. We consider
the modeling of human behavior as analogous to the lack of understanding of the ‘underlying true physics’
of the system. In other words, we don’t completely understand how humans make decisions; because of
that, modeling them is an issue.

Uncertainties that arise in distributed virtual environments closely mirror interpolation issues. For our
purpose, interpolation has less to do about modeling concerns, but is driven by fundamental trades associated

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

with the simulation infrastructure that provides the experimental apparatus to conduct an experiment. We
contend that both sources of uncertainty contribute to prediction outcomes that are classified as weak.

3 MODELING ISSUES

In modeling and simulation, abstraction is used to determine how details of a system are represented, while
maintaining validity with respect to some purpose (Frantz 1995). Despite careful choices by the analyst to
mitigate uncertainties, unresolvable uncertainties arise due to insufficient knowledge about a system being
modeled (Bankes 1993). While these uncertainties are common across both distributed virtual environments
and traditional self-contained discrete-event-based simulations; the implementation of a distributed virtual
environment for analysis yields new sources of unresolvable uncertainty.

One particular modeling concern is representing humans and their behavior. Human behavior remains
difficult to duplicate reliably; so in traditional simulations, modeling human behavior is often based on
probabilistic draws from a defined or known distribution. This modeling approach is problematic when
human behavior is not well understood, or if the purpose of the simulation experiment is to study that
behavior.

Including humans within the simulated world is one of the key benefits of a distributed virtual
environment. The goal of these systems is to create a shared sense of a represented world in which to
interact. This leads to higher realism, as the human(s) are no longer models, they are real; but they risk
adding noise to the system, especially if they are not clearly within the bounds of the system under study. As
anyone with a family can attest, no two humans are exactly alike and even a reliable humans behavior will
surprise you. This may be acceptable at family gatherings, but is an unfortunate occurrence for the analyst
trying to draw conclusions from data collected from a distributed virtual environment used to conduct a
study.

Introducing real humans into a simulation experiment presents challenges; if they are not directly part
of the system under study, they can introduce unwanted noise, and if they don’t know ‘how they should
act,’ their very presence is considered to be an ‘unresolvable uncertainity’ or a modeling ‘unknown.’ This
is a very real concern, especially if the system of interest is hypothetical - maybe representing the future
or simply does not exist.

4 LOGICAL USES

In light of the fact that our simulations are not perfect reflections of reality, it must be determined how
they might be useful. Considering only the types, sources and perceived magnitudes of uncertainty with
a given simulation is not enough to make this determination. Only after considering the analytic purpose
alongside simulation uncertainties can and educated opinion be formed regarding fitness for analytical use.

In (Dewar et al. 1996), a topology of logical uses for Distributed Interactive Simulation systems is
presented (Figure 1). This topology divides the domain of logical uses into two subspaces; the first being
experimental stimulus and the second as an analytical aid. The differentiator between these branches is
defined by this question; for whose benefit is the study being executed (Dewar et al. 1996)? If a human-in-
the-loop is the beneficiary, then the simulation is considered an experimental stimulus. Common examples
of this type of simulation can be found in the training and education community where the purpose is to
enhance three types of skills (i.e., motor, decision making, and operational skills) or entertainment (Topçu
et al. 2016). Additional detail on simulation as experimental stimulus can be found in (Dewar et al. 1996).

Simulations where the beneficiaries are others beyond the participants in the simulation, then the system
is categorized as an analytic aid (Dewar et al. 1996). This class of simulations will be familiar to most DoD
analysts as this is where most constructive analysis tools fit within the topology. The key discriminator
among the subclasses of analytic aids is the degree to which they are useful for prediction. Non-predictive
uses of DIS do not require a high confidence fit between the simulation output and the real world, these

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

Figure 1: Topology of Logical Uses (Dewar et al. 1996)

uses include bookkeeping activities such as recording events and logic tracing. Predictive models place a
higher requirement on the fit between simulation output and the real world system.

Strongly predictive models have a demonstrated capacity to forecast outcomes with a high degree of
accuracy (Dewar et al. 1996). Weakly predictive models suffer from moderate to high levels of parametric,
structural or unresolvable uncertainties, yet the model still describes some elements of the real system. This
category is likely the most populated within the analytic aid class of simulations. Care should be taken to
not overstate the predictive credibility of the analysis when using this type of simulation. Often the analyst
is forced to use a weakly predictive model due to lack of data resulting from restrictions or nonavailability.
Arguably, these system can play a supporting role in relation to experimentation, by generating hypotheses
to investigate. In other words, use of weakly predictive simulations will not necessarily generate correct
outputs, but might support a research strategy to understand and investigate the dynamics of a system.

Of particular interest is the ‘plausible outcomes’ branch in this topology, as it relates to unresolvable
uncertainties due to modeling unknowns. One source of unknowns can be humans inserted into a virtual
environment that really don’t know ‘how they should act or behave’ to fairly represent a system of interest.

5 ARCHITECTURE ISSUES

It is fair to say that UQ is related to understanding known knowns and being tangentially aware of and
accounting for, known unknowns. For a distributed virtual environment, this type of unknown or uncertainty
arises from the software and/or hardware architecture that provides the experimental apparatus used to
conduct an experiment. It is fair to say that we have known unknowns, but how those unknowns impact
and influence outputs is not well understood.

Unresolvable uncertainties arise as a result of fundamental trades that must be made when the architecture
of a distributed virtual environment is designed. Because these simulations by definition, include, interface
and interact with humans and/or hardware, these systems are classified as real-time systems. Real-time
systems define performance requirements in terms of timeliness; for example the time it takes to process
new inputs to yield outputs is referred to as a response time. As an example, a human operator flying a
simulated aircraft would expect (i.e., require) the system to respond to stick and throttle inputs by updating
displays within a short period of time (e.g., 100ms).

This requirement is fundamentally at odds with the desire to maintain a consistent representation of
the virtual world across all nodes in the distributed simulation. The challenge becomes problematic in

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

Figure 2: Latency and jitter affects (Armitage et al. 2006)

the presence of significant network latency and jitter. Latency is defined as the time required to deliver a
network packet from a sender to receiver, and jitter measures the variation in that delivery time. As Figure
2 shows, latency and jitter affect the reliable delivery and timeliness of state data between nodes in the
simulation. If the distributed nodes are connected via a network infrastructure with a relatively high latency,
data being used by one simulation might be out of date or ‘old’ when compared to its current correct value
as managed by another node. This inconsistency or error in state data is a distinguishing characteristic of
distributed virtual environments and must be recognized and managed (Hodson and Baldwin 2009). The
fundamental trade between state consistency and responsiveness is not new, it has existed since the advent
of distributed interactive simulation; sometimes it is referred to as the consistency-throughput trade-off
(Singhal and Zyda 1999). In the online gaming community, this issue manifests itself as an unfair game
(e.g., a dead person shooting). How the concept of ‘fairness’ is defined, is an area of research, and relates
to ‘plausibility’ or plausible responses which we discuss in Section 6.

If the purpose of the simulation is to serve as an analytical aid to support system study and understanding,
then the system itself will most likely be derived from a conceptual model that defines what to represent.
The conceptual model is mapped to entities which are created and managed by different simulation nodes
(Hodson and Hill 2013). To illustrate this approach, Figure 3(a) presents a notional conceptual model that
includes two interacting entities that exchange information related to an interaction. As shown in Figure
3(b), a possible architecture for the virtual environment might be two different simulations or simulators
interconnected by a network. Given this arrangement, entity data created and locally managed will need
to be shared using a network so that interactive environments can be created for each of the human
participants. Figure 3(c) highlights the influence of network latency and jitter on the state data managed by
each simulation. For this case, the state data associated with the location of remote entity(s) (i.e., dynamic
shared state) most likely will not match their true position as managed by their local hosting application.

5.1 CAP Theorem

The complexities associated with the design and implementation a distributed virtual environment are well
known. The underlying issues that create shared state inconsistencies are implementation specific and
include the architecture of the software, such as single or multi-threaded, processing priorities, model
execution/time advance assumptions, networking latency and jitter, model representation (fidelity), the

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

SimulationSimulation Network

Entity: Fighter Entity: Bomber

Interaction
Events

(a) Entities

(b) Implementation

(c) Dynamic Shared State
Local
Entity: Fighter
Position {x, y, z}
Remote
Entity: Bomber
Position {i’, j’, k’}

Local
Entity: Bomber
Position {i, j, k}
Remote
Entity: Fighter
Position {x’, y’, z’}

Truth
State

Perceived
State

data

Figure 3: Entities, implementation, and dynamic shared state (Hodson and Hill 2013)

selection of various error threshold parameters, etc. To reason about these complexities, we leverage the
CAP theorem - a useful abstraction from the domain of distributed databases.

The CAP theorem holds that you can create a distributed database that is consistent (writes are atomic
and all subsequent requests retrieve the new value), available (the database will always return a value
as long as a single server is running), or partition tolerant (the system will still function even if server
communication is temporarily lost - that is, a network partition), but you can have only two at once
(Redmond and Wilson 2012).

In other words, you can create a distributed database system that is consistent and partition tolerant, a
system that is available and partition tolerant, or a system that is consistent and available (but not partition
tolerant - which basically means not distributed). But it is not possible to create a distributed database that
is consistent and available and partition tolerant at the same time (Redmond and Wilson 2012).

Our use of CAP hinges upon viewing the virtual environment in the same light as a distributed database
system that attempts to keep its replicated data in sync (Millar et al. 2016). From this viewpoint, models
are the consumers of state data that produce outputs. If inputs to the model(s) include dynamic shared
state, then outputs may differ.

6 PLAUSIBLE RESPONSES

The CAP theorem has an important consequence for distributed virtual environments related to the plausibility
of interaction outcomes as observed at the server and clients. Since virtual environments typically prioritize
availability and partition tolerance above consistency, state divergence between the server and client is
virtually guaranteed. In the main, this divergence is of little consequence. However, when the server
and client must independently compute some result based on the same input variables at the same time,
problems with the plausibility of outcomes can arise due to state divergence. For instance, if the interaction
of interest is collision detection and the positional state of involved entities is not consistent, the server
may detect a collision while the client does not. This problem is exacerbated when the server completes
its outcome arbitration – the client’s version of the state may well be overwritten by a completely different
result, yielding an implausible outcome. Steed and Oliveira refer to this as joint plausibility, i.e., the notion
that two or more users accept that they are viewing the same simulation of a shared space (Steed and
Oliveira 2009).

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

Note that plausibility does not imply that the server and client compute identical interaction results.
Rather, joint plausibility requires that the computed results be close enough that users are willing to
accept the arbitrated results and not reject them out of hand as nonsensical. That is, dead men must not
keep shooting (Mauve 2000) due to a divergence in states between client and server. Minimizing state
inconsistency between nodes in a distributed virtual environment is a well-studied problem; Delaney et
al provide an excellent overview of consistency maintenance algorithms (Delaney, Ward, and McLoone
2006b, Delaney, Ward, and McLoone 2006a).

The maximum tolerable state divergence resulting in plausible outcomes is interaction dependent (Itzel
et al. 2010). None of the commonly employed consistency maintenance algorithms explicitly account
for outcome plausibility, preferring instead to schedule state updates in a fashion designed to minimize
inconsistency. However, minimal state inconsistency between nodes does not necessarily imply a plausible
outcome.

7 CONCLUSIONS

The main contribution of this research is the unification of two well understood, but separately considered
drivers that cause distributed virtual environments to produce at best plausible outcomes which lead to weak
prediction. The first relates to modeling aspects of a system that are unknown, the second is a result of the
simulation architecture or experimental apparatus used to perform the experiment. The first contributor to
plausible outcomes might consistently yield the same agreed upon incorrect result; the second will most
likely yield a range of results depending upon which node within the distributed system computes it.

ACKNOWLEDGMENTS

This research was supported by the Office of the Secretary of Defense, Operational Test and Evaluation
(OSD DOT&E) and the Test Resource Management Center (TRMC) with the Science of Test Research
Consortium.

DISCLAIMER

The views expressed in this article are those of the authors and do not reflect the official policy or position
of the United States Air Force, Department of Defense, or the US Government.

REFERENCES

Armitage, G., M. Claypool, and P. Branch. 2006. Networking and Online Games: Understanding and
Engineering Multiplayer Internet Games. Wiley.

Bankes, S. 1993. “Exploratory Modeling for Policy Analysis”. Operations Research 41 (3): 435–449.
Delaney, D., T. Ward, and S. McLoone. 2006a. “On consistency and network latency in distributed interactive

applications: A survey-part II”. Presence: Teleoperators and Virtual Environments 15 (4): 465–482.
Delaney, D., T. Ward, and S. McLoone. 2006b. “On consistency and network latency in distributed interactive

applications: A surveyPart I”. Presence: Teleoperators and Virtual Environments 15 (2): 218–234.
Dewar, J. A., S. C. Bankes, J. S. Hodges, T. Lucas, D. K. Saunders-Newton, and P. Vye. 1996. “Credible

uses of the distributed interactive simulation (DIS) system”. Technical report, Santa Monica, California.
Frantz, F. K. 1995. “A Taxonomy of Model Abstraction Techniques”. In Proceedings of the 27th Conference

on Winter Simulation, WSC ’95, 1413–1420. Washington, DC, USA: IEEE Computer Society.
Hodson, D. D., and R. O. Baldwin. 2009. “Characterizing, Measuring, and Validating the Temporal

Consistency of Live-Virtual-Constructive Environments”. Simulation: Transactions of The Society for
Modeling and Simulation International 85 (10): 671–682.

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

Hodson, D. D., and R. R. Hill. 2013. “The Art and Science of Live, Virtual, and Constructive Simulation
for Test and Analysis”. Journal of Defense Modeling and Simulation: Applications, Methodology,
Technology 11:77–89.

Itzel, L., V. Tuttlies, G. Schiele, and C. Becker. 2010. “Consistency management for interactive peer-to-
peer-based systems”. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, 1. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

Kennedy, M. C., and A. O’Hagan. 2001. “Bayesian Calibration of Computer Models”. Journal of the Royal
Statistical Society. Series B (Statistical Methodology) 63 (3): 425–464.

Mauve, M. 2000. “How to keep a dead man from shooting”. In Interactive Distributed Multimedia Systems
and Telecommunication Services, 199–204. Springer.

Millar, J. R., D. D. Hodson, G. L. Peterson, and D. K. Ahner. 2016, April. “Data Quality Challenges in
Distributed Live-Virtual-Constructive Test Environments”. Journal of Data and Information Quality 7
(1-2): 2:1–2:3.

Redmond, E., and J. R. Wilson. 2012. Seven Databases in Seven Weeks: A Guide to Modern Databases
and the NoSQL Movement. The Pragmatic Bookshelf.

Singhal, S., and M. Zyda. 1999. Networked Virtual Environments: Design and Implementation. Addison
Wesley.

Steed, A., and M. F. Oliveira. 2009. Networked Graphics: Building Networked Games and Virtual Envi-
ronments. Elsevier.

Topçu, O., U. Durak, H. Oğuztüzün, and L. Yilmaz. 2016. Distributed Simulation: A Model Driven
Engineering Approach. Springer.

Wikipedia 2016. “Uncertainty quantification”. [Online; accessed 28-April-2016].

AUTHOR BIOGRAPHIES

JEREMY R. MILLAR is a active-duty network operations officer in the United States Air Force. He
is the Director, Communications and Information for the Air Force Institute of Technology (AFIT). He
holds Bachelors and Masters degrees in Computer Science from the University of Tennessee and AFIT,
respectively. He is currently completing a Ph.D. in Computer Science at AFIT. His research interests lie
in distributed systems, virtual environments, and machine learning. Major Millar has served in a variety
of Air Force assignments including deployments to Iraq, Afghanistan, and Guantanamo Bay, Cuba. His
email address is jeremy.millar@afit.edu.

JASON A. BLAKE is a Systems Analysis Engineer for the U.S. Air Force Simulation and Analysis Facility
(SIMAF) and a Ph.D. student in the Operations Research Department at the Air Force Institute of Technology.
He has a B.S. in Industrial and Systems Engineering from The Ohio State University and a M.S. in Opera-
tions Research from the Air Force Institute of Technology. His research interests include combat modeling,
distributed simulation and design and analysis of experiments. He can be reached at jason.blake.3@us.af.mil.

DOUGLAS D. HODSON is an Assistant Professor of Software Engineering with the Air Force Institute
of Technology. He received a B.S. in Physics from Wright State University in 1985, and both an M.S. in
Electro-Optics in 1987 and an M.B.A. in 1999 from the University of Dayton. He completed his Ph.D.
at the Air Force Institute of Technology in 2009. He has over 25 years of experience in the domain of
modeling and simulation and has a research interest in characterizing the consistency of shared simulation
state data in terms of its temporal properties to estimate Live-Virtual-Constructive and Distributed Virtual
Simulations performance, cloud computing and modeling quantum key distribution systems. He is the
technical lead developer for the open-source OpenEaagles simulation framework that has been used to
develop a wide variety of standalone and distributed simulation applications. He is also a DAGSI scholar

www.manaraa.com

Millar, Blake, Hodson, Miller, and Hill

and a member of Tau Beta Pi. His email address is douglas.hodson@afit.edu.

J.O. MILLER is a 1980 graduate of the U.S. Air Force Academy (USAFA) and retired from the Air Force
as a Lt. Colonel in January 2003. In addition to his undergraduate degree from USAFA, he received an
MBA from the University of Missouri at Columbia in 1983, his M.S. in Operations Research from the Air
Force Institute of Technology (AFIT) in 1987, and his Ph.D. in Industrial Engineering from The Ohio State
University in 1997. He is an Associate Professor of Operations Research in the Department of Operational
Sciences at AFIT. His research interests include combat modeling, computer simulation, and ranking and
selection. He can be reached at john.miller@afit.edu.

RAYMOND R. HILL is a Professor of Operations Research with the Air Force Institute of Technology.
He has a Ph.D. in Industrial and Systems Engineering from The Ohio State University. His research
interests include applications of simulation, applied statistical modeling, mathematical modeling, decision
analytical methods, the design and analysis of heuristic optimization methods, and agent-based modeling.
He is an Associate Editor for Quality Engineering, Naval Research Logistics, Military Operations Research,
the Journal of Defense Modeling and Simulation, and the Journal of Simulation. He was a proceedings
co-chair for both the 2008 and 2009 Winter Simulation Conferences and was the General Chair for the
2013 conference. His email address is rayrhill@gmail.com.

www.manaraa.com

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Optimizing Update Scheduling Parameters for Distributed Virtual
Environments Supporting Operational Test

Jeremy R. Millar1 and Douglas D. Hodson2∗and Gilbert L. Peterson2 and Darryl K.
Ahner3

1Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, Dayton OH, 45344
2Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2950 Hobson Way,

Wright-Patterson AFB, Dayton OH, 45344
3Department of Operational Science, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB,

Dayton OH, 45344

SUMMARY

Distributed virtual environments provide a shared sense of time and space to geographically distributed
users. They depend on a limited ability to ensure system nodes at different locations maintain consistent
state data, and to the extent the system cannot support this goal, suffer from a number of undesireable effects.
This paper presents system models and algorithms designed to find optimal update scheduling parameters
that minimize the effects of inconsistent simulation state data. The first model is concerned with ensuring
distributed virtual environments present a fair experience to all users while simultaneously providing
adequate levels of system performance. In the second model we introduce the concept of plausibility limits
and address their use in ensuring all participants in an interaction see the same result. Copyright c© 0000
John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: optimization, distributed virtual environments, fairness, lvc simulation

1. INTRODUCTION

Distributed virtual environments (DVEs) are real-time, man-in-the-loop, geographically distributed
simulations supporting interaction between users through shared senses of time and place [29].
Applications of distributed virtual environments are diverse: examples include entertainment and
gaming [2, 1], distributed training [15], and analytical test and evaluation [27, 32, 18]. Maintaining
a shared sense of time and place for these applications requires synchronizing the state of dynamic
entities across system nodes. However, the inclusion of human actors imposes soft real-time
constraints on the simulation’s response to user inputs. Failure to meet these constraints often results
in user dissatisfaction and disuse of the system [7, 4]. Moreover, distributed virtual environments
must frequently tolerate the loss or addition of system nodes without failure or undue performance
impact. Meeting responsiveness and partition tolerance requirements necessitates a relaxation of
absolute state consistency [5].

The use of weakly consistent state in distributed virtual environments leads to a number of
challenges, particularly in relation to the outcome of user interactions in the shared space. Since
the state of the world (e.g., entity positions) may differ between nodes, each participant in an

∗Correspondence to: Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2950
Hobson Way, Wright-Patterson AFB, Dayton OH, 45344. E-mail: douglas.hodson@afit.edu

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

www.manaraa.com

2 J. MILLAR ET AL.

interaction may perceive different outcomes, manifesting as a sense of unfairness. For instance,
a player engaged in combat with another may perceive a series of definite hits and a kill while
his target perceives a series of misses and returns fire [22]. In analytical applications, weak state
consistency contributes to uncertainty in data measurements and difficulty in quantifying error [24].

The Department of Defense is increasingly turning to virtual environments to support operational
test and evaluation due to their ability to provide access to threat densities and assets that are
otherwise unavailable, e.g., foreign equipment or low-density, high-demand assets such as stealth
aircraft. In this domain, ensuring the plausibility of entity interaction outcomes is crucially important
to ensure that valid conclusions are drawn from the test event. Additionally, spatial state data
is of prime importance since nearly all aspects of the target operations chain (Find, Fix, Track,
Target, Engage, and Assess) depend on accurate positional information. While there are far more
state elements to a modern DVE than positional information, this data is of utmost importance to
our application domain, e.g., live-virtual-constructive simulation and experimentation in a military
context. This is because the outcome of nearly all relevant interactions (target detection and tracking,
weapons effects, damage models, etc) depend on accurate positioning. Inaccuracies in positional
state data can yield different outcomes for geographically distributed users potentially invalidating
the training or test event. Finally, ensuring a “fair fight” is necessary to keep operators from
unintentionally skewing experimental results.

There is little traceability from high-level simulation requirements to low-level synchronization
parameters. Often, a simulation is constructed and the synchronization protocol is hand tuned until
the system’s performance appears correct – most likely by subjective means. In the best case, the
state synchronization system meets or exceeds the consistency and responsiveness required to meet
the simulation’s goals. In the worst case, the (unspecified) consistency and responsiveness targets
are not met, and the simulation may behave in subtle and incorrect ways.

Since consistency is generally relaxed in favor of responsiveness, these errors most often manifest
as spatial errors wherein each simulation participant (or node) perceives the same entity at different
locations. This breaks the fundamental illusion of a shared space. Designers of distributed virtual
environments typically employ an optimistic consistency maintenance algorithm such as dead-
reckoning [29] to minimize the effects of weakly consistent state. In addition, the state update
scheduling algorithm must be carefully chosen and tuned to maximize state consistency without
overloading network resources or missing real-time deadlines. This paper presents two algorithms
designed to provide optimal update scheduling parameters.

The first algorithm is a multi-objective optimization for virtual environments employing dead-
reckoning-based state updates. It provides the optimal dead-reckoning error threshold in terms of
response time, state consistency, and fairness. Here, fairness is defined in terms of a cluster cohesion
metric that ensures all simulation users see similar levels of state consistency and response time.
This work was originally presented in [25].

The second algorithm extends the previous work to virtual environments employing periodic
state updates and is based on the notion of interaction contexts [19] and plausibility limits. We
introduce the notion of plausibility limits as the maximum tolerable state inconsistency that allows
all participants in an interaction to reach the same conclusion or outcome. Using object position
as the state of interest, a statistical model of consistency is derived in terms of update period and
spatial error. Solution of the associated optimization problem yields the largest period between
updates meeting the plausibility limit with a specified level of confidence.

Given some mild assumptions about network latency and user behavior, these algorithms provide
designers of distributed virtual environments a means to estimate system performance a priori to
ensure fitness for purpose, e.g., training or test and evaluation. For applications involving test and
analysis, the level of uncertainty associated with system state can be quantified and tuned to ensure
measurements are within tolerance.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 3

Node: 1
High Fidelity: A

Low Fidelity:
A,B,C

Node: 3
High Fidelity: C

Low Fidelity:
A,B,C

Node: 2
High Fidelity: B

Low Fidelity:
A,B,C

Figure 1. A virtual environment consisting of three nodes and three entities. Each node maintains an
authoritative high fidelity model for its local entity and low fidelity models for all entities in the system.

2. OPTIMAL DEAD-RECKONING

IEEE Standard 1278, Distributed Interactive Simulation (DIS) [13], provides a common protocol
and messaging standard for communicating between nodes in a virtual environment. While there
are other interoperability standards available (e.g., HLA [11] or TENA [26]), DIS defines the
data and semantics of operation. It is considered a de facto standard for defense-oriented virtual
environments (i.e., networked simulators) and its consistency maintenance mechanisms are widely
used in networked games [30]. Consequently, we restrict our attention to dead-reckoning algorithms
as defined by the DIS standard.

The DIS standard defines a predictive consistency maintenance protocol called dead-reckoning.
Under dead-reckoning, each node maintains a low-fidelity model for each remote entity in the
system in addition to the high-fidelity models for its hosted entities. Figure 1 depicts a virtual
environment consisting of three nodes and three entities. Each node provides an authoritative, high-
fidelity model for one or more entities. Additionally, each node maintains a low-fidelity model of
all other entities in the system. Crucially, each node also maintains a low-fidelity model of its own
local entity.

The low-fidelity models allow a node to update entity positions between state updates using
predictive dead-reckoning algorithms. Low-fidelity models typically operate using simplified
dynamics such as first order kinematics. Note that all nodes execute the same dead-reckoning model.
State updates are sent by a node whenever the divergence (i.e., difference) between the position of
the high-fidelity and low-fidelity models of its hosted entities exceeds a pre-determined threshold.
This threshold is the key parameter controlling the dead-reckoning algorithm.

Choosing an appropriate error threshold is a system-dependent design decision. Generally
speaking, lower thresholds yield better consistency. However, improved consistency comes at the
cost of increased network traffic. Depending on network characteristics such as available bandwidth,
it is possible to overwhelm the network and increase system response time (that is, the time it takes
for all nodes to see an update). Additionally, as network load increases, consistency can actually
decrease as well [21].

2.1. Fairness

Consistency and response time are local properties, that is, they are measured pair-wise. Thus the
consistency measured between nodes 1 and 2 with respect to entity A in Figure 1 might well
be different than that measured between nodes 2 and 3. Global properties are also of interest,
particularly the notion of fairness [6, 8]. A system is fair if no user has an advantage over others due
to consistency or response time.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

4 J. MILLAR ET AL.

Inconsistency

R
es

p
o

ns
e

Ti
m

e

+++

Inconsistency

R
es

p
o

ns
e

Ti
m

e +
+

+

A - Fair B - Unfair

Figure 2. Fairness plots for two three node virtual environments. Each + symbol represents a node’s location
in two-dimensional fairness space. The nodes in system A are tightly clustered with similar consistency and
responsiveness values. Therefore, system A is fair. Conversely, system B is unfair since the nodes are widely

dispersed in fairness space.

Fairness is measured by projecting each node participating in a virtual environment into a two-
dimensional fairness space with consistency as one dimension and system response time as the
other. A cluster cohesion measure such as within-class scatter is computed for all nodes. Low
scatter indicates that the nodes are tightly clustered in fairness space. Thus, each node has similar
consistency levels and response times and no participant experiences a significant advantage or
handicap. On the other hand, a high scatter value indicates that nodes have dissimilar consistency
values and response times. This affords some participants advantages in terms of state consistency
or response while handicapping others.

Figure 2 illustrates these ideas for two three-node virtual environments labeled system A and
system B. Note that the horizontal axis measures inconsistency so that consistency (i.e., difference
between states) degrades as one moves away from the origin. The vertical axis measures system
response time, i.e., the time required for a state update from one node to reach all other nodes. For
both dimensions lower values (closer to the origin) are more desirable. Each ‘+’ symbol indicates an
individual node’s position in fairness space based on average consistency level and response time.

For system A, the nodes are clustered fairly tightly, indicating a fair system. Each participating
node has a similar consistency level and response time. Thus no participant has a distinct advantage
in terms of better information about the environment or more rapid environmental response.
Conversely, the nodes in system B are widely dispersed in fairness space. This indicates an unfair
system. One node has a distinct advantage in terms of data consistency, one has an advantage in
response time, and one is severely handicapped in both dimensions.

A system can be fair while exhibiting poor performance with respect to data consistency or
response time. Similarly, a system with generally good performance can be unfair so long as at
least one node has sufficiently different performance characteristics. Consequently, it is incumbent
upon system designers to consider fairness in addition to the more traditional trade-offs between
consistency and responsiveness.

2.2. Multi-Objective Model

In order to optimize the dead-reckoning error threshold, we need to define and compute the
following quantities:

1. average inconsistency,
2. average response time,
3. and fairness.

2.2.1. Computing Inconsistency The virtual environment community has settled on two major
inconsistency measures:

1. spatial inconsistency (variously termed spatial error, export error, etc),
2. and time-space inconsistency [35],

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 5

Spatial inconsistency is simply the difference between the local, dead-reckoning estimate of
an entity’s position and its true, high-fidelity position. Time-space inconsistency is the spatial
inconsistency integrated over a time period to account for the fact that even small errors can be
meaningful if they last long enough. Of the two, spatial inconsistency is the more common, largely
because it is simple to compute. Additionally, choosing thresholds for time-space inconsistency
can be non-intuitive since the value no longer corresponds to a simple error. For these reasons, we
consider spatial inconsistency as our measure of interest for this research. However, the optimization
techniques employed here are applicable regardless of the specific inconsistency measure. Indeed,
they may well make time-space inconsistency more attractive by eliminating manual input of the
threshold value.

We compute the average spatial inconsistency as follows: let Pi(t) be the true position of entity
i at time t. Let P j

i (t) be the position of entity i as represented by node j at time t according to its
dead-reckoning model. Then the average (pairwise) inconsistency with respect to entity i at node j
is given by

1

T

T∑

t=1

|Pi(t)− P j
i (t)| (1)

Averaging Equation 1 over all entities for a particular node j gives the average spatial
inconsistency experienced by node j, i.e.,

1

N

N∑

i=1,i6=j

1

T

T∑

t=1

|Pi(t)− P j
i (t)| (2)

Computing Equation 2 for all nodes and averaging provides the average global system
inconsistency associated with remote entity positions, i.e.,

1

N2T

N∑

j=1

N∑

i=1,i6=j

T∑

t=1

|Pi(t)− P j
i (t)| (3)

We desire to minimize this inconsistency measure.

2.2.2. Computing Response Time Local response time is associated with the time it takes to process
user inputs. We consider the response time associated with propagating state updates from a given
node to all other nodes in the system. In order to account for queuing effects in the implemented
software system itself, as well as all network-induced latencies, this value should be measured in
an end-to-end fashion. That is, the clock begins when the sending application executes the send
operation and not when the operating system and network hardware actually place the bits on the
wire. Similarly, it ends when the receiving application (not host or operating system) has received
the data.

Response time can be calculated as follows: let tij be the amount of time required to send an
update from node i to node j. Then the response time is given by

max
j
tij , j = 1 . . . N, j 6= i (4)

where N is the total number of nodes in the system. Note that this value may vary with time since
it depends on environmental factors such as network load. For simplicity, we assume this value is
constant.

Averaging Equation 4 over all nodes provides a measure of system response time, i.e.,

1

N

N∑

i=1

max
j
tij , j = 1 . . . N, i 6= j (5)

We seek to minimize this response time.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

6 J. MILLAR ET AL.

f1

f2

Non-dominated solutions (Pareto Front)

Dominated solutions

Figure 3. Pareto front, dominated solutions, and non-dominated solutions for a bi-objective minimization
problem.

2.2.3. Computing Fairness Equations 2 and 4 provide a means of locating each node in a two-
dimensional fairness space. System fairness is computed as the cohesion of the resulting data cluster.
Let the vector fi be the location in fairness space of node i. Then the system fairness is given by

N∑

i=1

(fi − c)2 (6)

where c is the centroid of the N fairness locations fi. Minimizing this value corresponds to a tighter
grouping in fairness space.

2.2.4. Multi-Objective Error Threshold Problem We are now in a position to define selection of the
dead-reckoning error threshold as a multi-objective optimization problem. Let x be the spatial error
threshold. Let ~f = (f1f2f3), where f1 is given by Equation 3, f2 is given by Equation 5, and f3 is
given by Equation 6. Then we wish to find

min
x

~f(x) s.t. BW −BWmax ≤ 0 (7)

where BW is the system bandwidth requirement based on the number of state update messages sent
and BWmax is the system’s maximum available bandwidth.

2.3. Solving the Multi-Objective Error Threshold Problem

In general, there is not a single solution to the multi-objective optimization problem defined by
Equation 7. Instead, a set of solutions characterizing the trade-offs between individual objectives is
obtained. This notion is formalized through the concepts of Pareto dominance and Pareto optimality.

Definition 1 (Pareto Dominance)
Without loss of generality, assume a multi-objective minimization problem. A solution x dominates
solution y if fi(x) ≤ fi(y) ∀i and ∃j such that fj(x) < fj(y). Pareto dominance is denoted x � y.

Definition 2 (Pareto Optimality)
A solution x is Pareto optimal if ¬∃ x′ � x; that is, if no other solution dominates x.

A set of Pareto optimal solutions is called a Pareto optimal set and its image in objective space
is called the Pareto front. In solving multi-objective optimization problems, we seek to find or
approximate the Pareto optimal set and its associated trade-offs represented by the Pareto front.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 7

Figure 3 presents these concepts graphically for a bi-objective minimization problem. Square dots
represent non-dominated solutions on the Pareto front. Round dots represent dominated solutions.
The dotted lines represent dominance areas – a solution denoted by a square dot dominates any
solution above and to its right. Although not drawn, this relationship holds for solutions not on the
Pareto front as well.

Solutions to multi-objective optimization problems should lie on or as close as possible to
the Pareto Front. Additionally, solutions should cover a broad section of the Pareto front. Multi-
objective evolutionary algorithms are a preferred means of solving multi-objective optimization
problems because they can find multiple Pareto optimal solutions in a single run. Additionally,
multi-objective evolutionary algorithms are able to handle concavity and discontinuity on the Pareto
front [10] making them ideal for exploring the trade-off space. Implementation of a solver for
the error threshold problem requires two fundamental subsystems: a multi-objective optimization
routine, and a simulation of the virtual environment. We built the optimization portion of our solver
on the JMetal [14] multi-objective optimization framework. JMetal is a Java-based framework
providing abstractions for problems, algorithms, and experiments. It includes a large number of
multi-objective optimization algorithms as well as standard benchmark problems. Additionally,
JMetal provides an experimental framework capable of multiple independent runs and basic
statistics gathering. We have extended JMetal with an implementation of the error threshold
problem. This extension evaluates candidate solutions by invoking a virtual environment simulator,
reading its output, and computing values for each objective function.

A simulation of the distributed virtual environment was developed using the OMNeT++ [33]
discrete event simulation framework. The simulation is structured as a hierarchical set of interacting
modules that communicate via timed messages defining the events in the system. Runtime libraries
are provided to manage the simulation infrastructure (e.g., the future events list, event scheduling,
etc). Extensions provide a variety of network nodes and protocols to assist developers.

For each evaluation, our solver generates a network description file describing the node types,
network topology, and parameters to simulate. With the exception of the dead-reckoning error
threshold to evaluate, the contents of this file are fixed. The simulator is invoked with the error
threshold under consideration and run for a configurable number of time steps. It outputs trajectory
and message log files for each entity in the virtual environment.

The trajectory log file for each entity includes its true position at each time step. It also includes,
for each time step, the perceived location of all other entities in the system. Taken as a whole, this
data allows us to reconstruct the true and perceived locations for all pairs of entities at all times.

The message log file for each entity records the start time for each message sent as well as the time
each incoming message was received. Taking these data as a whole allows us to compute maximum
response times for each state update.

2.4. Model Validation

Validation of the multi-objective approach to setting error thresholds requires a particular virtual
environment for investigation. This environment should be deterministic with well-understood
decision models and dynamics for each entity. Additionally, all entities should be simulated to
allow for statistically significant numbers of trials and long simulations. Finally, the dynamics of
each entity should depend on one or more other entities and should be complex enough to provide
interesting data.

We leverage Reynolds’ boids model of flocking behavior [28] to provide a simple system with
complex enough dynamics to generate an interesting Pareto front. The model defines flocking
behavior as an emergent system property based on individual behaviors. Entities called boids move
through a virtual space in three dimensions much like a flock of birds flying. The behavior of each
boid is highly coupled to all other boids as each seeks to align its motion with its neighbors, steer
towards the center of its neighbors, and avoid collisions. These simple steering behaviors allow
complex flocking to emerge without explicitly designing it into the system.

To investigate the shape of the error threshold Pareto front for the boids, a series of single factor
experiments were undertaken. The goals of these experiments are to: 1) demonstrate the validity

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

8 J. MILLAR ET AL.

Table I. Algorithm parameters.

Parameter NSGA-II SPEA2 MCTS
Population size 100 100 100

Archive size 100 100 100
Max evaluations 500 500 500

Crossover probability 0.9 0.9 -
Crossover distribution index 20.0 20.0 -

Mutation probability 1.0 1.0 -
Mutation distribution index 20.0 20.0 -

Exploration coefficient - - 1√
2

Table II. Wilcoxon rank-sum test results for Experiment 1.

SPEA 2 MCTS
NSGAII N N
SPEA2 N

of the multi-objective optimization approach to determining dead-reckoning error thresholds, 2)
ascertain the shape and location of the Pareto front for a representative virtual environment, and
3) compare the performance of the NSGA-II [12], SPEA2 [36], and MCTS [34] multi-objective
optimization algorithms on the error threshold problem.

Two experiments were run using slightly different configurations. In the first, a 3 node fully-
connected boids network was established. 30 runs were made for each of the NSGA-II, SPEA2,
and MCTS algorithms. The simulation ran for 60,000 steps for each candidate solution. All network
parameters (e.g., propagation delay, jitter, etc) were fixed and homogeneous. This leads to a constant
response time based solely on the network’s propagation delay and makes Equation 5 irrelevant.
Therefore, a simple count of messages sent was substituted for Equation 5 with a goal of minimizing
total traffic. This is a reasonable thing to do as it serves as a surrogate or model for aggregate traffic
which is associated with system scalability.

The second experiment used a 5 node fully-connected boids network with time-varying network
characteristics. Each link was given a constant propagation delay of 500 ms and a fixed bandwidth
of 1.5 Mbps. For each transmission, jitter was sampled from a truncated normal distribution with
mean of 100 ms and variance of 60 ms. Link saturation was modeled with a simple queuing
mechanism – messages are held until the link becomes available. Retransmits and dropped packets
were not modeled. Response time was measured as the second objective. 10 runs were made for
each algorithm with 60,000 steps per simulation invocation.

Table I lists the parameters used for each algorithm. Note that crossover, mutation, and selection
operators refer to built-in operators provided by JMetal. The exploration coefficient for MCTS sets
a trade-off between exploration of new tree branches and exploitation of known good branches. For
multi-objective problems, there should be a coefficient for each objective. Since little was known a
priori about the structure of the search space, all objectives use the same coefficient value.

Figure 4 plots the approximate Pareto fronts returned by NSGA-II, SPEA2, and MCTS in
objective space for Experiment 1. All three algorithms achieve good convergence and diversity
and show a distinct Pareto front. As expected, the best values cluster near the origin. There are well-
defined trade-offs between inconsistency and message traffic and inconsistency and fairness. Low
volumes of messaging result in high inconsistency and poor fairness.

Algorithm performance was compared using the hypervolume quality indicator [10]. The
hypervolume indicator measures how much of the objective space is dominated by the solutions
in a given set. Consequently, it provides a good indicator of both convergence to the Pareto front
and diversity. The hypervolume was calculated for each algorithm run (N = 30). Algorithms were
compared using the Wilcoxon rank-sum test against the null hypotheses that the median samples
were drawn from the same distribution. The Wilcoxon results indicate NSGA-II outperforms both

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 9

Figure 4. Scatter plot showing the approximate Pareto fronts returned by NSGA-II, SPEA2, and MCTS for
Experiment 1.

Table III. Mann-Whitney rank-sum test results for Experiment 2.

SPEA2 MCTS
NSGA-II - N
SPEA2 -

SPEA2 and MCTS. Additionally, one-way ANOVA indicates statistically significant differences in
the sample medians (p = 0.0, α = 0.05).

Figure 5 plots the approximate Pareto fronts returned by NSGA-II, SPEA2, and MCTS in
objective space for Experiment 2. Figures 6 to 8 plot the planar projections of the data in Figure
5. All three algorithms achieve good convergence and diversity and show a distinct Pareto front.

Algorithm performance was again compared with respect to the hypervolume indicator. Due to
the small sample size (N = 10), the Mann-Whitney rank-sum test was used instead of the Wilcoxon
rank-sum test. Results are tabulated in Table III. No statistical difference was found between NSGA-
II and SPEA2 or between SPEA2 and MCTS. However, NSGA-II was found to outperform MCTS
(p = 0.0493, α = 0.05).

Both experiments show well-defined Pareto fronts indicating trade-offs between inconsistency,
response time, and fairness. Additionally, there are definite lower limits to performance in any of
these dimensions.

For example, Experiment 2 clearly shows that there is a minimum achievable inconsistency and
that as inconsistency approaches this value, the response time increases dramatically. This drives an
attendant degradation in fairness. This result is important since it implies that there are diminishing
returns as one approaches the theoretical minimum for inconsistency (see Figures 6 and 7).

Fortunately, there is a wide area of acceptable performance with low inconsistency, low response
time, and reasonable fairness. However, there is wide variability in fairness in this region driven
primarily by changing message latency due to jitter and congestion. It should be noted; however,
that while response times remain low in this region, the amount of state updates sent becomes

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

10 J. MILLAR ET AL.

Figure 5. Approximate Pareto fronts achieved by NSGA-II, SPEA2, and MCTS for Experiment 2.

Figure 6. Projection of the Pareto front on the inconsistency-response time plane for Experiment 2.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 11

Figure 7. Projection of the Pareto front on the inconsistency-fairness plane for Experiment 2.

rather large as borne out by Experiment 1. The systems under test in this work are small; real-world
systems include many more entities and nodes. Thus, while response time may not become a design
constraint, overall message volume may well limit scalability. Additionally, while not modeled here,
one should also expect response time to increase as message volume increases due to network
routing.

3. OPTIMIZING PLAUSIBILITY

Interactions between simulated entities are a defining characteristic of DVEs; without interactions,
there would be no need to design and built a distributed simulation system. Indeed, the difference
between two simulations largely comes down to the set of entities involved and the interactions
among them. For instance, an air-to-air combat simulation might include ground units as part of the
environment or virtual world, but not allow aircraft to interact with them. Conversion from an air-
centric to combined arms simulation might be as simple as expanding the set of allowed interactions
to include entities on the ground.

In any case, the set of interactions supported by a simulation directly impact its consistency and
responsiveness requirements. Some interactions, such as collision detection or engaging an entity
with a high-precision weapon, have a low tolerance for inconsistency in the simulation state. Others,
such as tracking a target with a long-range sensor, might tolerate higher levels of inconsistency
before erroneous results are generated.

In [19], Itzel et. al. present the notion of the interaction context for a state update. This context
captures the type, affected entities, and any dependent interactions for an update message. From this
information, system designers can derive consistency and interactivity requirements. For instance,
state updates for an entity moving through the environment without affecting any other entities

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

12 J. MILLAR ET AL.

Figure 8. Projection of the Pareto front on the response time-fairness plane for Experiment 2.

would have low consistency and interactivity requirements. Updates associated with two entities
engaged in combat, on the other hand, would have more stringent consistency and interactivity
requirements.

Similarly, Claypool and Claypool have categorized user actions in online games according to their
precision and deadline requirements [9]. Here, precision means the degree of accuracy necessary
to complete the (inter)action successfully and is analogous to a consistency requirement. High
precision actions show a high sensitivity to state inconsistency, while low precision actions are
more tolerant of inconsistent state. Deadline refers to the time required to achieve the final result
of an action. The authors show that network latency has a larger impact on game actions with tight
precision or deadline requirements.

The foregoing works set the stage for an investigation of interactions, however, they have some
limitations when applied to DIS-style (i.e., peer-to-peer or serverless) LVC simulations. First, both
assume a centralized client/server system responsible for processing user actions. Itzel’s interactivity
and Claypool’s deadline requirements are derived from this assumption. Highly interactive actions
(those with tight deadlines) require a rapid response from the server processing the actions.
This is exactly what is meant by simulation responsiveness [29, 17]. However, peer-to-peer LVC
simulations are able to respond immediately to user inputs since no communication with other
system nodes is required. With that said, responsiveness does impact a DVE’s ability to meet
interaction requirements; Section 3.1 explores this relationship.

Second, and more problematically, both Itzel and Claypool characterize the consistency
(precision) requirements derived from examining interactions categorically. This makes it difficult
to derive concrete system requirements. For example, just how precise must a “high” precision
action be? A more formal model of interaction is required to accurately derive consistency and
responsiveness requirements from interaction requirements.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 13

Suppose we have a peer-to-peer DVE with n entities denoted ei, i = 1 . . . n. We define an
interaction to be a state dependency between two entities denoted by the tuple

I = (ei, ej , L) (8)

The source of the interaction, ei, depends on the state of the target entity ej . Note the dependence
is unidirectional. This allows asymmetric interactions to be modeled. For instance, ei may be a
long-range sensor tracking ej at a sufficiently large distance so that ej is unaware of ei. Situations
involving two entities that are mutually interacting can be modeled with a pair of interactions I1 and
I2.

With this in mind, we define the plausibility limit L as the maximum spatial error the interaction
can support before participating entities disagree on the outcome. Our focus here is on spatial
data since nearly all interactions of interest in an operational test scenario are position-dependent.
However, we note that the concept of a plausibility limit is applicable to any continuous state data
for which a rate of change can be defined.

The parameters of a particular interaction should be defined by the engineering requirements the
simulation is meant to address. For instance, in an aerial refueling simulation, if the boom operator
must place the boom within 10 cm of the fuel receptacle to successfully couple the aircraft, then
the tolerance for that interaction would be 10 cm. Similarly, if certain entities are included in a
simulation as a backdrop to define the context, then there is little consequence if their positions are
inconsistent. Thus, interactions such as rendering their position to the user’s display would have a
high plausibility limit.

3.1. Spatial Error Model

Deriving state synchronization parameters from interaction tolerances requires a model for how
spatial state inconsistency develops in the first place. The node hosting the target entity ej of an
interaction maintains the true value of its state. If the replica of that state at the node hosting
the interaction’s source entity deviates from the true value, there is a state inconsistency. Any
inconsistency in the position data is called spatial error. This error represents the difference between
ei’s perception of ej’s position and ej’s true position.

More formally, and following the definitions in [3], let the real path, R(t), represent the true
position of ej at any time t. R(t) is a function of the user input and physics models employed by
the simulation node nj hosting ej . At intervals, nj sends a message updating the replica of ej at
the source node ni. These state updates coupled with any dead reckoning algorithms in use at ni
yield the placed path, P(t). This path represents ei’s perception of ej’s position at any time t. The
difference between the real and placed paths

E(t) = R(t)− P(t) (9)

is the spatial error at time t.
Moreover, the position of the entity on the placed path after ∆t seconds can be approximated

using Taylor series expansion [16],

R(t+ ∆t) ≈ R(t) +
dR
dt

∆t+
1

2

d2R
dt2

∆t2

Letting s(t) = R(t), v(t) = dR
dt , and a(t) = d2R

dt2 yields the familiar kinematic equation

R(t+ ∆t) ≈ s(t) + v(t)∆t+
1

2
a(t)∆t2

where s(t), v(t), and a(t) represent the entity’s position, velocity, and acceleration at time t.
The placed path at time t+ ∆t depends on the dead reckoning algorithm in use at the replica

node. If no dead reckoning is employed, then

P(t+ ∆t) = P(t) = s(t)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

14 J. MILLAR ET AL.

If first-order dead reckoning is employed, then

P(t+ ∆t) = s(t) + v(t)∆t

Combining the expressions for the real and placed paths yields the following expressions for the
spatial error at time t+ ∆t:

E(t+ ∆t) = v(t)∆t+
1

2
a(t)∆t2 (10)

in the case of no dead reckoning and

E(t+ ∆t) =
1

2
a(t)∆t2 (11)

in the case of first-order dead reckoning.
If the entity’s maximum velocity and acceleration are known (a safe assumption) and tupdate is

the time the last update was sent, then the spatial error after receiving the update can be bounded
above as

E(tupdate + ∆t) ≤ vmax∆t+
1

2
amax∆t2 (12)

and

E(tupdate + ∆t) ≤ 1

2
amax∆t2 (13)

for the no dead reckoning and first-order dead reckoning cases respectively.

3.2. Deriving Synchronization Parameters

Combining the notion of an interaction with the foregoing error model provides a straightforward
means of deriving synchronization protocol parameters from high-level engineering requirements.
Recall that an interaction is described by

I = (ei, ej , L)

where L specifies the maximum error in ej’s position that yields a correct result for the interaction.
Thus, for a simulation employing dead reckoning, we can compute the temporal accuracy interval
[20] for a state update in the context of interaction I as

∆t =

√
2 ∗ L
amax

(14)

Assuming state updates are sent from ej to ei periodically, the quantity ∆t specifies the maximum
time for which a state update is accurate. After ∆t seconds, the update will have been superseded
by another and the spatial error will have exceeded the tolerance of interaction I . Note that periodic
state updates have been shown to result in optimal state consistency [31]. Thus, our concern is to
find the largest interupdate period p that meets the error tolerance for interaction I .

To do so, we note that the temporal accuracy interval is the difference between the time the last
update was sent, tupdate and the time of its use, tuse. That is,

∆t = tuse − tupdate
Noting that the current value of the state becomes invalid when the next update is sent and letting

d represent the total update propagation delay (accounting for network latency, queuing, etc), the
largest accuracy interval is obtained when

∆t = tupdate + p+ d− tupdate (15)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 15

Figure 9. Update period as a function of plausibility limit with a delay of 100 ms and maximum acclerations
of 1, 5, and 10 G. Blue and red lines indicate 100 ms and 300 ms update periods respectively.

To summarize, let ei be an entity interacting with entity ej . Suppose the interaction has some
maximum plausibility limit L. Let amax be the maximum acceleration of ej and d be the state
update propagation delay. Then the maximum period between state updates from ej to ei is given
by

p =

√
2 ∗ L
amax

− d (16)

3.3. Model Validation

Validation of the optimal update period model was conducted using a two-node simulated DVE. The
server node hosts a single entity employing a random acceleration motion model. The client node
maintains a replica of the server’s entity and employs local dead reckoning as a consistency control
algorithm. Updates consist of the current position and velocity of the entity and are sent from the
server to the client at periodic intervals.

Figure 9 plots the predicted optimal update periods as a function of the plausibility limit for
entities with a maximum acceleration of 1, 5, and 10 times the force of gravity. The predicted
response curves assume an entity undergoing constant maximum acceleration and therefore indicate
a worst-case scenario. The horizontal lines indicate update periods of 100 ms (diamonds) and 300
ms (squares). These are the maximum limits recommended by the DIS standard for tightly-coupled
and loosely-coupled simulations. Cross-referencing these lines with the response curves indicate the
maximum obtainable plausibility limit for an entity undergoing constant maximum acceleration.

In the case of an entity whose maximum acceleration is 10 G (typical of military aircraft), the
maximum plausibility limit for any interaction I is 2 m. Any interaction that requires a maximum
spatial deviation less than 2 m cannot be guaranteed to provide a correct outcome. This is often
manifested as a divergence in interaction outcomes for each participating entity. For example, a

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

16 J. MILLAR ET AL.

Figure 10. Deviation between the 95% upper tolerance bound (1− α = 0.05) and plausibility limit L = 1.0
for an entity with normally distributed acceleration N(0, 1).

collision detection routine requiring accuracy of 1 m may result in one entity observing a collision
while the other does not.

As noted, the model provides a worst-case prediction of the update period required to obtain
a plausibility limit of L. In real DVEs, entities rarely undergo sustained maximum accelerations.
In fact, entity acceleration is practically zero the vast majority of the time. If the requirement for
meeting the plausibility limit is relaxed in a statistical fashion, then the required update period can
be quite a bit higher than that predicted by the optimal model. That is, if the spatial error is allowed
to exceed the limit some fraction of the time, then tolerance limits can be computed at a specified
level of confidence. The guarantee provided by Equation 16 then becomes something similar to
“with confidence 1− α, the spatial error will be within the plausibility limit L 95% of the time.”
More formally, we have the following optimization problem:

min

√
2 ∗ L
amax

− d− L (17)

Figure 10 plots the deviation between the 95% upper tolerance bound (1− α = 0.05) for an
entity moving according to a normally distributed acceleration profile (a N(0, 1), amax = 9.8) and a
plausibility limit L = 1.0 with an update propagation delay of 100 ms. The predicted update period
according to Equation 16 is 0.3518 s. On the other hand, relaxing the consistency constraints and
solving the minimization problem given in Equation 17 yields an update period of 1.75 s. This larger
period ensures that 95% of the spatial error over the course of the simulation will be less than or
equal to L = 1.0 with 95% confidence.

Finally, we have conducted subsequent experiments assessing the likelihood of meeting
plausibility limits using motion models derived from World of Warcraft trace data [23]. These
experiments indicate the probability of exceeding a “loose” plausibility limit (L ≥ 1.0) is quite
low for real-world motion models. However, as the plausibility limit decreases, the exceedence
probability reaches a non-zero minimum – approximately 4% for an interupdate period of 0 ms and
20% for an interupdate period of 100 ms with L = 0.1.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

OPTIMIZING UPDATE SCHEDULING PARAMETERS 17

4. CONCLUSIONS

This paper presented two algorithms designed to provide optimal update scheduling parameters. The
first algorithm is a multi-objective optimization for virtual environments employing dead-reckoning-
based state updates. It provides the optimal dead-reckoning error threshold in terms of response
time, state consistency, and fairness. Here, fairness is defined in terms of a cluster cohesion metric
that ensures all simulation users see similar levels of state consistency and response time.

The second algorithm applies to virtual environments employing periodic state updates and is
based on the notion of interaction contexts and plausibility limits. Plausibility limits are defined
as the maximum tolerable state inconsistency that allows all participants in an interaction to reach
the same conclusion or outcome. Using object position as the state of interest, a statistical model
of consistency is derived in terms of update period and spatial error. Solution of the associated
optimization problem yields the largest inter-update period meeting the plausibility limit with a
specified level of confidence.

Both algorithms provide insight into the performance of distributed virtual environments.
Optimizing dead-reckoning for fairness, consistency, and response time ensures that all participants
have a similar experience and that no user has a systemic advantage. Optimizing only for fairness
tends to yield DVE systems that perform only as well as the worst-performing node and can be
frustrating for users. Treating the problem as a multi-objective problem ensures that all users see
similar levels of responsiveness and consistency. Treating fairness in terms of cluster cohesion
ensures that all users are equally handicapped. Importantly, it is possible for the DVE to be fair
while failing to perform adequately. This is of particular concern for DVEs supporting applications
such as engineering test and evaluation. In these cases, a different optimization must be pursued to
ensure fitness for purpose and allow some sense of system calibration. Optimizing the update period
in terms of plausibility limits fulfills this need.

Plausibility limits are derived directly from the interactions supported by a DVE and provide a
means for ensuring that all parties see a similar outcome for any given interaction despite variances
in the state data at each node. Borrowing from real-time systems theory, the maximum period that
supports a particular limit can be derived from a simple model of spatial error. This can be done
either absolutely or in a statistical sense.

Together, these algorithms provide systems designers a means to provide both a “fair fight”
and plausible outcomes for virtual environments supporting operational test scenarios. This is
a necessary first step to quantifying the uncertainty associated with experiments conducted on
virtual environments and ensuring valid conclusions are drawn from the resulting data. Future work
includes continued study into the properties of plausibility limits and their utility for defining the
capabilities of distributed virtual environments with particular application to military simulation,
test, and analysis.

REFERENCES

1. Second Life. http://secondlife.com.
2. World of Warcraft. http://www.worldofwarcraft.com.
3. Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and Sampath Rangarajan. Accuracy

in dead-reckoning based distributed multi-player games. In Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 161–165. ACM, 2004.

4. Anastasiia Beznosyk, Peter Quax, Karin Coninx, and Wim Lamotte. Influence of network delay and jitter
on cooperation in multiplayer games. In Proceedings of the 10th International Conference on Virtual Reality
Continuum and Its Applications in Industry, pages 351–354. ACM, 2011.

5. Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, 2000.
6. Jeremy Brun, Farzad Safaei, and Paul Boustead. Fairness and playability in online multiplayer games. Faculty of

Informatics-Papers, page 232, 2006.
7. Kuan-Ta Chen, Polly Huang, and Chin-Laung Lei. Effect of network quality on player departure behavior in online

games. Parallel and Distributed Systems, IEEE Transactions on, 20(5):593–606, 2009.
8. Peng Chen and Magda El Zarki. Perceptual view inconsistency: An objective evaluation framework for online

game quality of experience (qoe). In Proceedings of the 10th Annual Workshop on Network and Systems Support
for Games, NetGames ’11, pages 2:1–2:6, Piscataway, NJ, USA, 2011. IEEE Press.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

18 J. MILLAR ET AL.

9. Mark Claypool and Kajal Claypool. Latency can kill: precision and deadline in online games. In Proceedings of
the first annual ACM SIGMM conference on Multimedia systems, pages 215–222. ACM, 2010.

10. Carlos A Coello Coello, Gary B Lamont, and David A Van Veldhuisen. Evolutionary algorithms for solving multi-
objective problems. Springer, 2007.

11. Judith S Dahmann, Richard M Fujimoto, and Richard M Weatherly. The department of defense high level
architecture. In Proceedings of the 29th conference on Winter simulation, pages 142–149. IEEE Computer Society,
1997.

12. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–197, 2002.

13. DIS Steering Committee. IEEE standard for distributed interactive simulation-application protocols. IEEE
Standard, 1278, 1998.

14. J. J. Durillo and A. J. Nebro. jMetal: A java framework for multi-objective optimization. Advances in Engineering
Software, 42(10):760–771, 2011.

15. Richard M. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley & Sons, Inc, 2000.
16. Dai Hanawa and Tatsuhiro Yonekura. On the error modeling of dead reckoned data in a distributed virtual

environment. In Cyberworlds, 2005. International Conference on, pages 8–pp. IEEE, 2005.
17. Douglas D Hodson and Rusty O Baldwin. Performance analysis of live-virtual-constructive and distributed virtual

simulations: defining requirements in terms of temporal consistency. 2009.
18. Douglas D Hodson and Raymond R Hill. The art and science of live, virtual and constructive simulation for test

and analysis. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, page
1548512913506620, 2013.

19. Laura Itzel, R Suselbeck, Gregor Schiele, and Christian Becker. Specifying consistency requirements for
massively multi-user virtual environments. In Haptic Audio Visual Environments and Games (HAVE), 2011 IEEE
International Workshop on, pages 1–2. IEEE, 2011.

20. Hermann Kopetz. Real-time systems: design principles for distributed embedded applications. Springer, 2011.
21. Damien Marshall, Séamus McLoone, Tomás Ward, and Declan Delaney. Does reducing packet transmission rates

help to improve consistency within distributed interactive applications? 2006.
22. Martin Mauve. How to keep a dead man from shooting. In Interactive Distributed Multimedia Systems and

Telecommunication Services, pages 199–204. Springer, 2000.
23. Jeremy R. Millar, Douglas D. Hodson, Gilbert L. Peterson, and Darryl K. Ahner. Data quality challenges in

distributed live-virtual-constructive test environments. ACM Journal of Data and Information Quality, To appear.
24. Jeremy R Millar, Douglas D Hodson, and Richard Seymour. Deriving lvc state synchronization parameters from

interaction requirements. In Distributed Simulation and Real Time Applications (DS-RT), 2016 IEEE/ACM 20th
International Symposium on, pages 85–91. IEEE, 2016.

25. J.R. Millar, D.D. Hodson, G.B. Lamont, and G.L. Peterson. Multi-objective optimization of dead-reckoning
error thresholds for virtual environments. In Collaboration Technologies and Systems (CTS), 2014 International
Conference on, pages 562–569, May 2014.

26. J Russell Noseworthy. The test and training enabling architecture (TENA) supporting the decentralized
development of distributed applications and lvc simulations. In Distributed Simulation and Real-Time Applications,
2008. DS-RT 2008. 12th IEEE/ACM International Symposium on, pages 259–268. IEEE, 2008.

27. Eric Paul Parker, Nadine Elizabeth Miner, Brian Peter Van Leeuwen, and James Brian Rigdon. Testing unmanned
autonomous system communications in a live/virtual/constructive environment. International Test and Evaluation
Association Journal (ITEA), 30:513–522, 2009.

28. Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer
Graphics, volume 21, pages 25–34. ACM, 1987.

29. Sandeep Singhal and Michael Zyda. Networked virtual environments: design and implementation. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

30. Anthony Steed and Manuel Fradinho Oliveira. Networked Graphics: Building Networked Games and Virtual
Environments. Elsevier, 2009.

31. Xueyan Tang and Suiping Zhou. Update scheduling for improving consistency in distributed virtual environments.
Parallel and Distributed Systems, IEEE Transactions on, 21(6):765–777, 2010.

32. Brian Van Leeuwen, Vincent Urias, John Eldridge, Charles Villamarin, and Ron Olsberg. Performing cyber
security analysis using a live, virtual, and constructive (lvc) testbed. In Military Communications Conference,
2010-MILCOM 2010, pages 1806–1811. IEEE, 2010.

33. Andras Varga. Omnet++. In Modeling and Tools for Network Simulation, pages 35–59. Springer, 2010.
34. Weijia Wang, Michèle Sebag, et al. Multi-objective monte-carlo tree search. In Asian conference on machine

learning, 2012.
35. Suiping Zhou, Wentong Cai, Bu-Sung Lee, and Stephen J Turner. Time-space consistency in large-scale distributed

virtual environments. ACM Transactions on Modeling and Computer Simulation (TOMACS), 14(1):31–47, 2004.
36. Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the strength pareto evolutionary algorithm,

2001.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.manaraa.com

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

09/14/2017 Dissertation Sep 2012 - Sep 2017

A Stochastic Model of Plausibility in Live-Virtual-Constructive Environments

Millar, Jeremy R., Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENG-17-S-015

Intentionally Left Blank

Distribution Statement A. Approved for Public Release; Distribution Unlimited.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Distributed live-virtual-constructive simulation promises a number of benefits for the test and evaluation community.
However, geographically distributed systems are subject to fundamental state consistency limitations that make assessing
the data quality of live-virtual-constructive experiments difficult. This research presents a data quality model based on the
notion of plausible interaction outcomes. This model accounts for the lack of consistency in distributed real-time systems
and offers system designers a means of estimating data quality and fitness for purpose. Experiments with trace data
validate the plausibility model and exceedance probability estimates.

Distributed Simulation; LVC; Plausibility

U U U UU 123

Dr. Douglas D. Hodson, AFIT/ENG

(937) 255-6565 x4719

	Air Force Institute of Technology
	AFIT Scholar
	9-14-2017

	A Stochastic Model of Plausibility in Live-Virtual-Constructive Environments
	Jeremy R. Millar
	Recommended Citation

	tmp.1516899491.pdf.ilZ3V

